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Abstract

A hybrid model comprised of Gaussian Mixtures Mod-
els (GMMs) and Hidden Markov Models (HMMs) is used
to model generic sounds with large intra class perceptual
variations. Each class has variable number of mixture com-
ponents in the GMM. The number of mixture components is
derived using the Minimum Description Length (MDL) cri-
terion. The overall performance of the hybrid model was
compared against models based on HMMs and GMMs with
a fixed number of mixture components across all classes.
We show that a hybrid model outperforms both class-based
GMMs, HMMs, and GMMs based on fixed number of com-
ponents. Further, our experiments revealed that the contri-
bution of transitions between states in HMMs has no sig-
nificant effect on the overall classification performance of
generic sounds when large intra class perceptual variations
are present among sounds in the training and test datasets.
Sounds that show multi-event structure with events that tend
to be similar (repetitive) indicated improved performance
when modeled with HMMs that can be attributed to HMM’s
state transition property. Conversely, GMMs indicate bet-
ter performance when the sound samples show subtle or no
repetitive behavior. These results were validated using the
MuscleFish sound database.

1. Introduction

Several studies have been carried out to analyze sounds
in the context of discriminating speech and music, speaker
variability analysis, musical instrument classification, sim-
ilar song search, however, only a few studies on generic
sound classification have been performed to date. One ma-
jor bottleneck in coming up with a robust sound classifica-
tion framework is the difficulty in retrieving a single set of
acoustic features that can optimally describe a certain sound
class. This is due to the multiplicity of the sound sources
that can comprise a single sound class (perceptual varia-

tions). For instance, a sound class categorized as manufac-
turing may contain manufacturing of steel, textile, printing,
bottling etc. making it difficult to model and eventually to
classify. Furthermore, the limited feature extraction capa-
bilities may also undermine the separation of subtly distinct
sound sources that generate sounds of different classes. In
general, human sound labeling tends to correspond to phys-
ical or visual attributes of a sound source rather than di-
rectly to acoustic attributes. This causes sounds with signif-
icant variations to be grouped under a single category and
makes it difficult to find a suitable feature sets that can in-
variably describe all sounds encompassed by a single class
label.

A recent study carried out by Lie Lu [4] reported an
impressive performance on the classification of 5 audio
classes containing silence, music, background sound, pure
speech and non-pure speech using Support Vector Machines
(SVM). Another study [2] based on SVM had been carried
out on the MuscleFish database and had reported lower clas-
sification error rate compared to the error rate reported by
Wold [16]. According to the authors in [2], using SVMs is a
trade-off between the accuracy and the computational com-
plexity, and a trial and error approach has been adopted in
choosing a kernel function and the parameters therein.

Moreover, techniques such as Hidden Markov Mod-
els (HMM) have been applied for speech recognition and
sound related applications for several decades. The abil-
ity of HMMs to model speech sounds together with tem-
poral sequences has made it a promising choice in model-
ing other sounds. The ability to model temporal sequences
is an advantage when modeling text-dependent tasks, but
the sequencing of sounds found in the training data does
not always reflect the sounds found in the test dataset [7].
In [13] [5], it was shown that removing transition proba-
bilities in HMM speaker models had no effect on the per-
formance of text-independent tasks. This in turn raises the
question about the appropriateness of temporal sequencing
with HMM when modeling generic sounds, which can be
considered as a text-independent task. Reyse-Gomez and
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Ellis [8] have used HMMs for generic acoustic modeling,
and the model parameters were estimated using number
of approaches. The overall best performance was achieved
with low entropy criterion where a mixture of Gaussians
has been used to estimate the number of states and the ini-
tial transition matrix for each class model.

In this study, we examine the effectiveness of using
HMMs and GMMs in modeling generic audio. GMMs pro-
vide a probabilistic model for the underlying sounds gen-
erated by sound effects and also have the ability to model
arbitrary densities by using a number of Gaussian com-
ponent functions. A multi-modal density function can be
constructed by combining Gaussian components. Moreover,
GMMs are good for classifying data consisting of sub-
categories. The application of GMMs in the modeling and
classification of speech, audio, music and text-independent
speaker identification can be found in literature [11] [7]
[1]. A recent comparison study carried out between MFCC
and MPEG-7 features for sports audio classification has
achieved equally good results from both types of features
[17] which motivated us to use Mel-Frequency Cepstral Co-
efficients(MFCC) as the audio features for our experiments.
In this paper, we compare generic acoustic models based
on a hybrid model with HMMs and a variety of GMMs for
their performance against a database of generic sounds with
large inherent variability.

2. Acoustic Modeling

Features of a given sound class are extracted by subject-
ing sound files in the database to Mel-Frequency Cepstral
Coefficients (MFCC) extraction. Fig. 1(a) shows the 2-D
projection of these multidimensional features for 3 differ-
ent sound classes. As we can see, due to the overlapping
among classes in the feature space, finding the boundaries
that optimally separate among these classes is challenging.
As Fig.1(b) shows, the distribution of a typical sound class
can be represented as a mixture of many sub classes that can
be approximated by several Gaussian distributions.

2.1. Gaussian Mixture Model (GMM)

The motivation for using Gaussian densities as the rep-
resentation of audio features [18], and speaker identifica-
tion [7] is the potential of GMMs to represent an underly-
ing set of acoustic classes by individual Gaussian compo-
nents in which the spectral shape of the acoustic class is pa-
rameterized by the mean vector and the covariance matrix.
Also, GMMs have the ability to form a smooth approxima-
tion to the arbitrarily-shaped observation densities in the ab-
sence of other information.

GMMs have been extensively used for speaker identi-
fication [7] [12], music-speech discrimination [11]. With
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Figure 1. (a) 2-D projection of 3 different
sounds (b) Fitted distributions of multiple
Gaussian of a single class of speech data in
(a).

GMMs, each sound class is modeled as a mixture of sev-
eral Gaussian clusters in the feature space; each sound clus-
ter in the feature space is represented by a mean vector and
a covariance matrix. Let � � � � � � � � � � � � � � � � � � � � � � 	
be a set of sound classes where 
 denotes the number of
classes. For a given sound � � � � � � � � � � � � � � � � , we model
the class conditional probability, � � � � � � � with a GMM:

� � � � � � � �
� �

� � �
� � � � � � � � � � �

where each mixture component density � � � � � � � � is mod-
eled by a � -variate Gaussian distribution where � represents
the number of features, with mean � � � and covariance ma-
trix � � . and the mixing parameter � � � corresponds to the
prior probability that the sound � was generated by compo-
nent � � � ;

� �� � � � � � � � ; � � denotes the number of com-
ponents in the sound class � � . By assuming that the given
data are uncorrelated, we can use a diagonal covariance ma-
trix, and write the distribution of the �  ! component � � � as
multivariate normal with parameters, mean and auto corre-
lations:

� � � � � � � � " � � � � � # � � �
with � � � denoting the mean, and # � � denoting the standard
deviation of each component. And each mixture model is
represented by a triplet; $ � � � � � � � # � � � � � � � .

2.1.1. Parameter Estimation Let a set of sound
classes, � , be represented by a set of GMMs,

$ � � $ � � $ � � � � � � $ � � � � � � $ � 	 where

$ � � � � � � � � # � � � � � � � % & � � � � � � � 	 '

The EM algorithm [6] is used to find the maximum like-
lihood parameters of each class. The aim here is to find a
sound model, $ � , that optimizes the posteriori probability
given the sound, � . ie; � � $ � � � � . With parameters of the es-
timated sound models, the marginal posterior probabilities
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� � � � � � � are evaluated.

� � � 	 
 � � 	 � � � � � � � � (1)

Assuming equally likely prior probabilities � � � � � for all
classes, we can rewrite Eq.(1) as the maximum likelihood
criteria:

� � � 	 
 � � 	 � � � � � � � �

2.2. Hidden Markov Model (HMM)

HMMs are widely used for modeling time series data.
A discrete-time HMM can be viewed as a Markov model
whose states are not directly observable. Each of these hid-
den states is associated with a probability distribution func-
tion which models the symbol emission probability from
that state. A HMM can be fully described by 3 entities: the
state transition probability distribution � , the observation
probability distribution, � , and the initial state distribution� . By using the compact notation, � � � � � � � � � , we can
represent the complete parameter set of the model. This pa-
rameter set defines a probability measure for an observation
sequence � , which can be given as � � � � � � .

2.2.1. Parameter Estimation The training of the mod-
els for each sound class is carried out using the Forward-
Backward algorithm [6], also known as Baum-Welch re-
estimation, which determines the HMM parameters, � that
maximize the probability � � � � � � . For the evaluation of a
sequence, forward algorithm was adopted.

3. Experiments And Results

3.1. Feature Selection

For our experiments, we use MFCCs which are
short-term spectral features. The extracted MFCCs are

� -dimensional feature vectors, where � � � � contain-
ing the energy, cepstrum, first order derivative and the sec-
ond order derivative terms. The MFCC feature vectors are
extracted at 8kHz sampling rate with an overlapping win-
dow of size 128, and a DFT size of 256. Each sound
file within a class is normalized across individual fea-
tures so that the mean is zero and the variance is equal to
one.

3.2. GMM Model Order Selection

For GM modeling, the MDL criterion [9] was used to
determine the number of optimal mixture components per
class. According to the experiments performed on synthetic
and real data [10], MDL had been able to derive reliable es-
timates in most cases, and yielded sensible estimates even

for the most difficult data partioning instances. The exper-
iments in [10] have been carried out assuming the full co-
variance of data. In our case, we assume diagonal covari-
ance of the features due to the highly uncorrelated nature of
the MFCC based feature vectors [3]. The MDL cost func-
tion can be written as:

� � � � � � � � � � � � � � � � � � � � � � � � �  ! " � � � � � � � # (2)

The first term in Eq.(2) measures the model’s entropy and
the second term penalizes over complex models. The num-
ber of free parameters, " � � � � , in the GM model can be
estimated as in [14]: " � � � � � ! � � � � � � � �  � . The
first term is for � dimensional mean and diagonal covari-
ance, and the second term is introduced for the � � � �

 � adjustable mixture weights imposed by the constraint$ %& ' ( ) � & �  . Once several models per class are trained,
the model selection is carried out based on the MDL prin-
ciple by choosing the model with the minimum description
length as: *

� � � 	 
 � + % � , - � � � � � � � � � � � � (3)

3.3. Hybrid Model

A hybrid model is constructed using GMMs based on
class-based variable mixture component and HMMs. Hy-
brid models take advantage of the positive aspects of each
model used in the combination. Each type of model is capa-
ble of capturing specific information embedded in the train-
ing data. For instance, GMMs are more likely to capture
structural information while HMMs are inclined to extract
transition information in sequences. The selection of a sin-
gle model alone may discard these potentially relevant in-
formation which may hinder its classification performance.
By pooling the outputs from both models one can improve
the performance and reliability of the method before mak-
ing the classification decision. With this in mind, we use a
hybrid model that exploits the sum rule that combines the
results from both models. The sum rule is known to be ro-
bust to errors in the estimated posterior probabilities of the
each model [15]. Given a set of weights . / 0 1 2 �  3 3 � 4 for

� number of classifiers, and 5 classes, a given sound, � is
assigned to a model � 6 , if

7
0 ' ( / 0 � � � 6 � � 0 � 8

7
0 ' ( / 0 � � � 9 � � 0 � � �  � : : : � 5 1 � ;� <

A smaller training set, which is a subset of the training set
used in training the models was used to estimate the weights
in order to minimize the combined classifier error rate. The
devised model is illustrated in Figure 2.
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Figure 2. The hybrid generic audio classifica-
tion system.

3.4. Database

For our experiments MuscleFish database [16] was used.
The MuscleFish database used consists of 414 sound files
belonging to � � � � sound classes. Table 1 illustrates the
sample distribution of sound categories in the MuscleFish
database.

Class(k) N � Class N �
Female 36 8 Violin-pizz 40 6
Male 17 6 Animal 9 24
Altrombone 13 14 Bell 7 14
Cello 47 72 Crowds 4 8
Oboe 32 28 Laughter 7 16
Percussion 102 46 Machines 11 24
Tubular-bell 20 40 Telephone 17 14
Violin-bowed 45 50 Water 7 14

Table 1. Class distribution(N) of MuscleFish
Database together with the Gaussian compo-
nents � � � selected using the MDL criterion
for each respective training dataset.

3.5. Classification Performance

We divided the database in to 2 mutually exclusive sets;
training, and test sets with the training set having twice as
much data as in the test set. During the testing, each frame
of the query sound is evaluated with all class models, and
the class model which yields the highest likelihood is as-
signed as the respective class of the tested frame. Once
all the frames of the query sound are evaluated, the class
model, which claims the majority of the frames as its own
is assigned as the winner model for the tested sound. Table
2 illustrates the results of modeling sounds with HMMs us-
ing varying Gaussian mixture components and states. The
best performance is achieved with 2 states with 2 mixture
components. Further increase of the number of states in the
models deteriorates the overall performance. With GMM,
the best performance was achieved with 10 Gaussian mix-
tures as illustrated in Table 3. The overall classification per-
formance of the GMM exceeded the results achieved with 2-
state, 2-mixture HMM indicating GMM’s potential of cap-
turing the structure of generic sounds without utilizing the
transition information encoded in sequences. The individual
class performances from GMM and HMM are illustrated in
the Figure 3. The class crowd was not recognized by any of
the models. This can be attributed to the fewer number of
samples available in the database, which is only 4, the low-
est of all the class samples. Classes such as laughter, ma-
chines, violinpiazz, female, and telephone performed better
with HMM. These classes show strong repetitive behavior
compared to the ones which scored high with GMMs - bells,
altrombone, violinbowed that show no obvious repetitive
nature. This suggests that when HMMs are used to model
such non-repetitive sounds, the HMM’s transition property
has little or no effect on the overall classification perfor-
mance. The best performance was achieved with the hybrid
model as shown in Table 4.

4. Conclusions

In this paper we have modeled and classified generic
sounds using a hybrid model comprised of a class-
dependent variable component GMM and HMM. Over-
all performance was compared against class-based
GMMs, GMMs with fixed number of Gaussian compo-
nents across all classes and HMMs. Many of the classes in
the database did not have sufficient data samples for a bet-
ter representation of a class. The performance decreases as
the number of states and Gaussian mixtures increased in
HMMs. With GMMs, individual sound classes were mod-
eled using class-dependent variable Gaussian components
determined by the MDL principle. According to these re-
sults, Gaussian Mixture Models with varying number

Proceedings of the 11th International Multimedia Modelling Conference (MMM’05) 

1550-5502/05 $20.00 © 2005 IEEE 



Q m top 1 top 2 top 3
1 2 63.28 78.91 87.50

4 61.70 77.34 87.50
6 58.59 74.22 82.81

2 2 67.97 80.47 88.28
4 54.69 70.31 83.38
6 50.78 66.41 80.47

4 2 57.81 68.75 82.81
4 47.70 64.10 75.0
6 43.75 55.47 64.84

6 2 53.91 67.97 80.47
4 42.97 53.91 62.50
6 35.94 50.78 60.16

Table 2. Overall Performance(%) with vary-
ing number of Gaussian mixtures(m) and
states(Q) per class using HMMs. The results
are given for top 1,top 2,and top 3 retrievals.

Number of mixtures top 1 top 2 top 3
m=4 44.53 63.89 71.09
m=8 70.31 83.59 92.19
m=10 73.44 82.81 90.62
m=12 70.31 81.25 89.84
m=16 67.97 79.69 90.62
Class-dependent 81.23 85.21 93.62

Table 3. GMM Performance(%) for top 1,top 2,
top 3.

of mixtures in each respective class are better in cap-
turing the structure of sounds and thereby modeling
generic sounds when there are large perceptual varia-
tions in the training and test sets in which samples lack rep-
etition. Similarly, sounds which are more repetitive in
nature performed well with HMMs. The hybrid model out-
performed all the other derived models by exploiting the
strengths of individual models and evinced the suitabil-
ity of such a structure for modeling generic sounds that
exhibit large intra-class variations.
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