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Abstract. Finding motifs that can elucidate rules that govern peptide binding to 
medically important receptors is important for screening targets for drugs and 
vaccines. This paper focuses on elucidation of peptide binding to I-Ag7 mole-
cule of the non-obese diabetic (NOD) mouse - an animal model for insulin-
dependent diabetes mellitus (IDDM). A number of proposed motifs that de-
scribe peptide binding to I-Ag7 have been proposed. These motifs results from 
independent experimental studies carried out on small data sets. Testing with 
multiple data sets showed that each of the motifs at best describes only a subset 
of the solution space, and these motifs therefore lack generalization ability. 
This study focuses on seeking a motif with higher generalization ability so that 
it can predict binders in all Ag7 data sets with high accuracy. A binding score 
matrix representing peptide binding motif to Ag7 was derived using genetic al-
gorithm (GA). The evolved score matrix significantly outperformed previously 
reported motifs.  

1   Introduction 

An I-AAgg77 motif shown in Fig. 1 describes commonly observed amino acid residues 
find in peptides that bind major histocompatibility complex (MHC) molecule of the 
non-obese diabetic (NOD) mouse (Rammensee I-AAgg77 motif) [1]. These residues, 
which contribute significantly to peptide binding, are called primary anchor residues 
and the positions they occur are called anchor positions. Anchor positions may be 
occupied by so called preferred residues which are tolerated, but alone contribute 
little to peptide binding strength. I-AAgg77  is critical for the development of insulin-
dependent diabetes mellitus (IDDM) in NOD mice [2-10]. To understand the molecu-
lar basis of development of IDDM in NOD mice it is important to understand peptide 
binding properties to I-AAgg77. I-AAgg77 binds peptides that are 9-30 amino acids long. Pep-
tide binding to I-Ag7 is mediated through a binding core that is 9 amino acids long. 
For example, a well-known I-AAgg77 binding peptide EEIAQVATISANGDKDIGNI 
(mouse HSP protein 166-185) binds to I-AAgg77 via residues 171V, 174I, 176A, and 
179D [4]. Of these positions, three (171V, 176A, and 179D) correspond to the pri-
mary anchors and 174I corresponds to a preferred residue in the Rammensee motif. 
When associated with appropriate metrics, a binding motif can be used for prediction 
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of peptides that bind I-AAgg77. For example, weights of primary anchors can be set to 4 
and of preferred residues to 2. The score for mouse HSP peptide 166-185 will be 14 
(4+2+4+4 for 171V, 174I, 176A, and 179D). High scoring peptides are thus predicted 
as I-AAgg77 binders. A widely used extension of the binding motif scoring scheme is a 
quantitative matrix that contain 9×20 coefficients. Nine rows represent positions and 
20 columns represent each of the 20 amino acids, while matrix cells contain weights 
for each amino acid at a given position. The score for the prediction is calculated by 
summing or multiplying the coefficients. Examples of binding matrices are given in 
[8,9]. To our best knowledge, a quantitative matrix for I-AAgg77 has not been reported to 
date. 

 Position 
 1 2 3 4 5 6 7 8 9 

Primary 
anchors 

K,H, 
S,A, 
  V 

  L  V,A        D,S, 
  E 

          
Preferred 
residues 

R,T   I,V, 
  M 

 T    

Fig. 1. Peptide binding motif for the I-Ag7 molecule � see the main text for the description 

Some high-affinity binders to I-AAgg77 such as mouse GAD (247-261) peptide 
NMYAMLIERYKMEPE [7] do not correspond well to the Rammensee motif � the 
best 9-mer window in this peptide has one primary anchor (250A) and one preferred 
residue (253I). This indicates that any one binding motif is likely to be an imperfect 
approximation of rules that describe peptide binding to I-AAgg77. Indeed, we found seven 
different I-AAgg77 motifs derived from largely unrelated experimental data sets. These 
include reported motifs Reizis [4], Harrison [5], Gregori [7], Latek [6], Rammensee 
[1], Reich [2], and Amor [3]. These seven motifs are mutually inconsistent and some 
are completely different. Each motif describes amino acids at primary and secondary 
anchor positions, as well as �forbidden� amino acids at specific positions. We inter-
preted these as well-tolerated, weakly-tolerated, and non-tolerated amino acids. We 
adopted the following metrics: well-tolerated residues have weight 4, weakly-
tolerated 2, and non-tolerated amino acids -4. Anchor positions were assigned 
weights � primary anchor positions have weight 4 and secondary anchor positions 
weight 2. The primary and secondary anchor positions were defined according to the 
motif descriptions by the authors. The binding motifs and the scoring scheme can be 
accessed at <research.i2r.a-star.edu.sg/Ag7motifs>. In this work we seek to: a) com-
pare the predictive ability of the seven reported motifs, b) combine existing data and 
develop a method for the derivation of a unified motif that describes well all available 
data, and c) compare several data-driven methods for the identification of the unified 
motif. The I-AAgg77 7-related data were extracted from multiple data sets shown in Ta-
ble 1. We adopted a quantitative matrix as a model for the unified I-AAgg77 motif. Three 
well-known methods were employed in the search for the best I-AAgg77 quantitative ma-
trix: Multiple EM for Motif Elicitation (MEME) [14], Gibbs sampling [see 9], and 
genetic algorithm [see 15]. Here we report the unified motif for I-AAgg77, and the com-
parative analysis of the motifs used in this study. 
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Table 1. I-Ag7 related peptide data sets 

Data set Non binders Binders Reference 
Reizis 21 33 [4] 
Harrison 19 157 [5] 
Gregori 31 109 [7] 
Latek 8 37 [6] 
Corper 35 13 [10] 
MHCPEP - 176 [11] 
Yu 16 10 [12] 
Stratmann 3 118 [13] 
Brusic 37 - [unpublished] 

2   Characterization of Motif Using a Binding Score Matrix 

In this section we give a formal definition of the target model as a quantitative matrix. 
A k-mer motif in an amino acid sequence is usually characterized by a binding score 
matrix Q = {qia }kx20 where qia denotes the binding affinity of the site i of the motif, 
when it occupies by the amino-acid ;a∈∑ ∑ denotes the set of 20 amino-acid resi-
dues. The cumulative binding score for a k-mer not only indicates the likelihood of 
the presence of a particular motif but also determines the likelihood that a sequence 
containing the motif binds to another sequence. Therefore, the binding score matrix 
can be viewed as a quantification of a real biological functioning or binding of the 
motif to other peptides as described in [13]. Given a binding score matrix Q of size 
k×20 we define the binding score, s for a k�mer motif in a sequence of length n as: 

{1,..., 1}
max jj n k

s s
∈ − +

=  (1) 

1

0

1 if 
0 otherwise

k
j i

j ia ij ij
i a

x a
s q withδ δ

−
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=
= ⋅ = 


∑∑  (2) 

We define m* as the k-mer of sequence x at position j, i.e. m* = (xj,�,x j+k-1), where 

{1,..., 1}
arg max j
j n k

j s
∈ − +

=  (3) 

3   Description of the Method 
Let the number of training data sets extracted be d, and the number of motifs inferred 
from different experiments be Ψ. We can then express the available prior information 

as D = {(Di, ml):i=1,2,�.d, l=1,2,.., Ψ } where ml is the consensus motifs found in the 

experiments. Let Di = {(xij, bij): j = 1, 2,�., ni } where xij is the jth sequence in the i th 
dataset and bij ∈  {0, 1} indicates whether the sequence xij is a binder (when equal to 
one), or a non-binder (when equal to zero). The collated dataset is then given by Γ= 
{xij: i=1,2,�..d; j=1,2,�ni} where ni is the number of sequences in ith dataset. With 
these information extracted from the experimentally validated motifs we seek a motif 
m* that best describes the consensus segment in all the sequences in Γ.  
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3.1   Training and Test Data Sets 

The training and test data sets in the experiments are given in Table 1. These data sets 
consist of short peptides ranging from 9-30 amino acids per sequence. Except for the 
Stratmann data set, all other data sets were used in the training. The Stratmann test set 
contains only 118 binders and three non binders. Because of the small number of 
experimentally determined non-binders, we extended the number of non-binders in 
this set to 1000 by generating random peptides. The generation of random peptides 
involved adding correct proportions of amino acids to each peptide so that the gener-
ated peptide mimics real protein peptides [16]. Of 1000 random peptides generated, at 
most five percent are presumed to be binders. This percentage was estimated based 
on the analysis of I-AAgg77 binding data given in [10]. 

3.2   Multiple EM for Motif Elicitation (MEME) 

MEME is a tool for discovering motifs in protein or DNA sequences in an unsuper-
vised manner [14]. All I-AAgg77 binders were converted to fasta format and submitted to 
the public domain MEME analysis tool [17] and three motifs were requested. The 
position scoring matrices retrieved were assessed for predictive accuracy. 

3.3   Gibbs Sampling 

Another tool, Gibbs sampling is also used in the analysis. Gibbs sampling is less 
susceptible to becoming trapped in a local minima. Details about the Gibbs Motif  
Sampler can be found in [18, 19]. Input data for the Gibbs sampling are the same as 
for MEME. A single motif was retrieved. A scoring scheme was formulated based on 
the mutual information contain in each position and assessed for predictive accuracy. 

3.4   Genetic Algorithm 

Genetic algorithms work with a fixed number of individuals as its population each 
representing a particular solution. Let the population at time or iteration t of evolution 
be Q(t). During a single iteration, each chromosome is evaluated against the goodness 
of the solution by using a fitness function, f. 

Binary String Representation: The binding strengths of elements of binding score 
matrix, qia, {i=1,�.k, a Є Σ} for each a sequence have been empirically determined 
and quantitatively expressed in the data sets. Each individual (binding score matrix) 
in the population is represented by a binary string. A binding score matrix of size k x 
n, where k represents motif length and n represents number of residues has kn ele-
ments.  

Fitness Computation: The definition of the fitness function is crucial. The fitness 
function, in our case, is expected to yield a unified consensus motif for the training 
set. The dataset of each experiment in the literature gives the information whether the 
particular sequence is a binder or non-binder. Using this information, the numbers of 
true positives (TP) and true negatives (TN) determined by solutions in the population 
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could be computed. A highly probable candidate solution must produce lower binding 
score when tested on a non-binding peptide than on a binding peptide. By incorporat-
ing the TPs and TNs resulting from the evaluation and taking into account binding 
scores for binders and non-binders, we defined a fitness function f on a putative mo-
tif, m, representing a binding score matrix Q is defined as: 

i
)i j

nd
s (x : m )(1-biji=1 j=1f(Q ) = T P + η*T N

∑ ∑

 
(4) 

The GA finds a score matrix that minimizes the above fitness value. An empirically 
obtained constant, η  is used to minimize the number of possible false positives that 
can arise from the solution matrix with respect to the non binders.  

Construction of Template Score Matrices (Seeds) for Initial Population: In our 
analysis, seven template scoring matrices were constructed as seeds for the initial 
population. These template scores are based on the knowledge inferred from the lit-
erature. A scoring scheme was enforced on the template formation of scoring matri-
ces by assigning a score of 0 that are non tolerant at a specific site. The highest score 
of 80 was assigned if the site is in a critical position and the amino acid at that posi-
tion is categorized as a well tolerant. A base score of 10 was assigned for all the other 
positions that have no significant contribution. The seeding for the rest of the popula-
tion was carried out with a super-uniform random generator which yields a popula-
tion representing all schemata up to a certain defining length (limited by the popula-
tion size) with large global correlations [see 20]. 

4   Experimental Results 
The motifs generated from MEME, Gibbs sampling and the best GA-derived scoring 
matrix for the cumulative data set are shown below. Using these motifs and scoring 
matrices we measured the predictive performance on the Stratmann data set combined 
with randomly generated non-binders (Tables 3 and 4). The performance was meas-
ured by the area under the receiver operating characteristics (AROC) curve and esti-
mates of cut-off points between sensitivity and specificity plots (SE=SP). These met-
rics indicate the generalization ability of each method across different data sets. 

MEME Motifs: Motif1: MKRHGLDNY Motif2: AE(Y)Y(Q)LI(K)N(T)VMD Mo-
tif3:CAKKIVSDG. Multi-level motif derived from the Gibbs Sampling: Gibbs Motif: 
N(MP)K(V)A(RI)T(H)G(A)E(FL)D(Q)N(YL)K(YV). The amino-acid inside the 
bracket indicates a possible substitution for the amino-acid to its immediate left. 

The predictive performance was measured by AROC values and generalization abil-
ity by estimating the cut-off points between sensitivity and specificity plots for previ-
ously unseen data (Stratman Ag7 binders, plus randomly generated non-binders). The 
GA based scoring matrix outperformed the next best method by some 10% on Strat-
mann data set. Most of the motifs showed marginal predictive accuracy 
(0.8>AROC>0.7). As expected, majority of the motifs performed well on the data sets 
they were derived from, but less so on the independent data sets. While Gibbs sam-
pling produced marginal results, the performance of MEME on these data sets was 
unremarkable. 
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Table 2. TThhee  ffiinnaall  ssccoorriinngg  mmaattrriixx  ddeerriivveedd  bbyy  GGAA  

 

Table 3. Table 3. The AROC values from predictions using each motif across all the data sets. 
AROC>0.9 correspond to excellent, 0.8<AROC<0.9 to good, 0.7<AROC<0.8 to marginal predicti-
on accuracy. AROC=0.5 corresponds to random guessing, and 0.5<AROC<0.7 to poor predictions 

 AROC values 
INDIVIDUAL DATA SETS Motif for  

predictions Reizis Harrison Gregori Latek Corper MHCPEP Yu Stratman 
Reizis 0.95 0.68 0.74 0.95 0.50 0.59 0.48 0.67 
Harrison 0.75 0.88 0.69 0.64 0.53 0.72 0.33 0.79 
Gregori 0.64 0.68 0.71 0.73 0.40 0.64 0.61 0.79 
Latek 0.66 0.72 0.80 0.95 0.64 0.52 0.75 0.75 
Rammense 0.49 0.64 0.76 0.82 0.60 0.48 0.43 0.77 
Reich 0.55 0.64 0.69 0.58 0.56 0.47 0.50 0.73 
Amor 0.69 0.54 0.66 0.70 0.56 0.66 0.40 0.78 
MEME1 0.61 0.58 0.49 0.60 0.43 0.55 0.36 0.49 
Gibbs 0.33 0.79 0.77 0.81 0.39 0.64 0.58 0.82 
GA 0.76 0.86 0.76 0.96 0.79 0.83 0.94 0.88 

Table 4. Cutoff points (SE=SP) for predictions using each motif across all the data sets 

 Cut-off points SE=SP 
INDIVIDUAL DATA SETS Motif for  

predictions Reizis Harrison Gregori Latek Corper MHCPEP Yu Stratman 
Reizis 0.87 0.79 0.69 0.89 0.50 0.57 0.56 0.74 
Harrison 0.64 0.84 0.65 0.58 0.50 0.68 0.40 0.73 
Gregori 0.58 0.62 0.62 0.65 0.42 0.63 0.58 0.74 
Latek 0.66 0.68 0.73 0.92 0.60 0.50 0.65 0.72 
Rammense 0.52 0.58 0.70 0.77 0.52 0.46 0.51 0.70 
Reich 0.54 0.60 0.62 0.57 0.56 0.48 0.50 0.67 
Amor 0.62 0.54 0.62 0.66 0.55 0.60 0.42 0.71 
MEME1 0.48 0.55 0.68 0.47 0.63 0.50 0.47 0.47 
Gibbs 0.32 0.68 0.71 0.66 0.37 0.58 0.56 0.71 
GA 0.72 0.80 0.72 0.92 0.64 0.75 0.90 0.83 

5   Discussion and Conclusions 
We have devised a scoring matrix representing a consensus motif with higher gener-
alization ability than other proposed motifs derived for I-Ag7 data sets found in the 
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literature. Motifs described in the literature for I-Ag7 data were tested on an independ-
ent data set (Stratmann data set together with 1000 randomly generated non-binders) 
for the estimation of the prediction accuracy of the evolved matrix. Random non-
binders were generated using approximated amino acid compositions. The GA matrix 
performed well across all data sets, and showed higher generalization ability than the 
other proposed motifs. The ability of the GA to search a larger solution space in a 
context independent manner may have eliminated biases in the data sets such as fewer 
training data, an unequal number of binders and non-binders in the data sets, thereby 
providing a better solution in finding a consensus motif for difficult and unbalanced 
data sets. 
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