
The Viability of the Web
Browser as a Computer
Music Platform

Lonce Wyse and Srikumar Subramanian
Communications and New Media Department
National University of Singapore
Blk AS6, #03-41
11 Computing Drive
Singapore 117416
lonce.wyse@nus.edu.sg
srikumarks@gmail.com

Abstract: The computer music community has historically pushed the boundaries of technologies for music-making,
using and developing cutting-edge computing, communication, and interfaces in a wide variety of creative practices
to meet exacting standards of quality. Several separate systems and protocols have been developed to serve this
community, such as Max/MSP and Pd for synthesis and teaching, JackTrip for networked audio, MIDI/OSC for
communication, as well as Max/MSP and TouchOSC for interface design, to name a few. With the still-nascent Web
Audio API standard and related technologies, we are now, more than ever, seeing an increase in these capabilities and
their integration in a single ubiquitous platform: the Web browser. In this article, we examine the suitability of the
Web browser as a computer music platform in critical aspects of audio synthesis, timing, I/O, and communication.
We focus on the new Web Audio API and situate it in the context of associated technologies to understand how well
they together can be expected to meet the musical, computational, and development needs of the computer music
community. We identify timing and extensibility as two key areas that still need work in order to meet those needs.

To date, despite the work of a few intrepid musical
explorers, the Web browser platform has not been
widely considered as a viable platform for the de-
velopment of computer music. Professional-quality
computer music platforms typically provide sample
rates of 48 kHz and above, multiple channel config-
urations (e.g., 8, 7.1, 5.1), computational power to
meet heavy signal processing demands, languages
and compilers that can take advantage of the full
computational power offered by a machine, the
ability to handle standard communications proto-
cols such as MIDI and Open Sound Control (OSC),
reliable timing services capable of scheduling with
sample accuracy, and the ability to deliver minimal
throughput latency from gesture to sonic response.
Access to local machine capabilities, such as file
systems and media input and output, is essential.
Real-time networked music performance requires
reliable delivery of data between participants with
minimal delay for both audio and control signals.
Synthesis development systems must be extensible
in addition to providing access to common units
for constructing instruments and sound models.
Special-purpose development environments are
important for the creation of music and musically
oriented applications.

Computer Music Journal, 37:4, pp. 10–23, Winter 2014
doi:10.1162/COMJ a 00213
c© 2014 Massachusetts Institute of Technology.

Why would musicians care about working in
the browser, a platform not specifically designed
for computer music? Max/MSP is an example of a
platform specifically oriented towards musical de-
sign, composition, and performance that addresses
stringent sound and musical quality demands, and
that provides access to many key tools such as
visual design and network communication “under
one roof.” Although the browser platform does not
match the musically oriented features or native
audio and interface performance of existing spe-
cialized tools, it does offer an attractive alternative
for music creators in several respects. For example,
the developer community is enormous and provides
a wealth of libraries (many of them open-source)
for everything from physics and graphics to user
interface components, specialized mathematics,
and many other areas relevant to computer music
developers. Another advantage it offers the musical
community is a highly developed infrastructure for
supporting work requiring massive participation.

There is also a significant benefit the browser has
to offer from the perspective of “users”—performers
and actively participating audiences, as well as
composers building on sounds or instrument designs
contributed by others. Consider the following list of
questions that arise in different scenarios for these
users:

How do musicians access the sheet music they
need for practice and performance?

10 Computer Music Journal

What does an audience member need to do in a
participatory piece of music in order to send
data to performing musicians?

How does an ensemble of instrumentalists
turn their mobile devices into the particular
set of instruments necessary for a particular
performance?

How would two remotely located musicians
collaborate using a shared graphical score?

How would a composer find a patch he or she
needs?

How would a Web designer access and use a
synthesis component from an interactive sound
developer?

What is necessary for two people to share a video
connection and play instruments together at
the same time?

What would 1,000 people need to do to “jam”
together?

How do people use their phones to interact with a
sound piece executing on their computers?

Currently, there are many answers to each of
these questions, most of which involve some combi-
nation of exchanging physical media or downloading
software (the right version for specific hardware),
choosing directories, decompressing archived files,
installing programs (using one of many different
methods), setting up environment variables, in-
stalling the necessary related libraries, figuring
out remote and local IP addresses, making sure a
firewall is off, etc. If there were one simple an-
swer to all these questions—“Point your browser
to this URL”—this would have a significant im-
pact on the usability and portability of computer
music.

Even though the browser has historically been
no match for the performance of thoroughbred
computer music systems, musicians and developers
did explore and push the boundaries of the creative
possibilities the platform had to offer. William
Duckworth’s Cathedral (1997) is one of the earliest
examples of interactive music and graphical art on
the Web, and a multi-user version of Duckworth’s
PitchWeb debuted in 2001. JSyn provided a synthesis
engine in the C language with a Java application
programming interface (API) that could be used

in browsers as a plug-in (Burk 1998). An early
application of JSyn was a drum box allowing
distributed users to jam together.

Recently, however, several new standards have
been emerging from the World Wide Web Consor-
tium (W3C)—in parallel with the specification of the
hypertext markup language, revision 5 (HTML5)—
that specifically address the media capabilities of
the browser. The Web Audio API (Rogers 2012) is
one of the new APIs that is of critical importance
for computer music.

As of mid-2013, recent implementations of the
major browsers are already capable of supporting
a large variety of computer music practices, such
as real-time audio synthesis applications, graphical
interfaces, and simultaneous interaction between
participants from around the world. Some examples
include Gibber for “live coding” performance
(Roberts and Kuchera-Morin 2012); WebPd, which
supports graphical programming with a growing
subset of Pure Data (Pd) functionality within the
browser (McCormick and Piquemal 2013); and
multi-player shared sequencers and instruments
(e.g., Borgeat 2013). In this article, we evaluate the
emerging browser platform for its potential to meet
the whole range of diverse and more demanding
needs of the computer music community. The
Web Audio API provides facilities for low-level
sound synthesis and processing, making it the most
obvious enabling technology for computer music. A
new synthesis library in itself, however, would be of
minor importance if it were not part of the browser
context. We will consider a variety of components
of the new browser ecosystem that together are
creating the disruptive potential for computer music
making.

Overview

We begin our discussion with the development of
Web technologies from a musical perspective. We
then introduce a key new component of browser
technology, the Web Audio API, and discuss its
possibilities and limitations for synthesis appli-
cations with an eye toward compositionality and
extensibility, followed by issues of latency, timing,

Wyse and Subramanian 11

Table 1. Musically Related Web Technologies at a Glance

Web Audio API Low latency, multi-channel, sample-accurate audio playback, and processing in the browser
Web MIDI API Support for talking to connected MIDI devices and scheduled delivery of MIDI messages from

within the browser
WebSocket protocol Protocol for persistent two-way data exchange between browser and server; useful for

workspaces shared over a Wide Area Network (WAN)
WebRTC Peer-to-peer real-time communication between browsers for audio, video, and control data
Web Workers Background processes for time-consuming computation
getUserMedia Browser access to the user’s microphone and webcam (part of WebRTC)
XMLHttpRequest Fetch and post arbitrary data to a server without leaving or reloading a Web page; can be used

to load audio samples for processing with the Web Audio API
Node.js Server-side JavaScript engine with an asynchronous full network stack
WebGL OpenGL-based stack for advanced two- and three-dimensional visualizations
Canvas 2D JavaScript support for two-dimensional drawing and rendering in a browser
SVG Scalable Vector Graphics document structure, renderable in browsers; useful for music notation
localStorage Small-scale per-domain key/value storage for the browser, similar to cookies
FileSystem API Per-domain persistent recursive file system for large data storage from within the browser

and synchronization. We address the communi-
cation needs of the computer music community
with a look at the new WebRTC specification for
peer-to-peer communication in browsers and how it
compares with the current state-of-the-art system
for audio communications, JackTrip (Cáceres and
Chafe 2010). We conclude with some summary
remarks about making and performing computer
music within the browser.

Table 1 summarizes the browser-based technolo-
gies relevant to the computer music community, a
subset of which we examine in detail.

Development of the Web
from an Audio Perspective

Originally, the browser was deaf and mute, and it
provided little in the way of interaction and dynamic
behavior, beyond loading a new Web page from a
remote server upon the specification of a web address
or a mouse click on a hyperlink. In the late 1990s,
most major browsers had added support for Java
applets, which were built with all the capabilities
of the general purpose Java language, though with
“sandbox” security restrictions for protecting the
local system. Java Sound, which was introduced as

part of Java 1.3 in May 2000, supported real-time
capture, processing, and generation of sampled
sound in browser “applets” written purely in Java.

Several Java plug-ins were developed that were
capable of high-quality interactive sound synthesis,
such as JSyn (originally running on compiled native
code and later on pure Java; cf. Burk 1998), and the
pure-Java ASound (Wyse 2003). In the late 1990s,
Flash, with its graphical and time-line oriented
development environment, vector graphics, and
object-oriented ActionScript language, became
the standard plug-in platform for animation and
interaction. It was not until 2008, however, that
“dynamic sound generation” became available in
Flash 10. Although usable for some animation
and musical applications, latencies in the range of
hundreds of milliseconds did not approach the much
lower latencies provided by native applications such
as Max/MSP.

Another important historical development came
in 1995 with the introduction of the language
JavaScript to the Netscape browser. JavaScript could
be used by Web site developers to access components
of Web pages and to program simple interactivity.
Built-in support for Java on browsers has waned,
and JavaScript is now the only general-purpose
language built in to all browsers. Programs in other
languages run in browsers on top of plug-ins that

12 Computer Music Journal

support, for example, Flash or Java applets, but the
plug-ins must be downloaded and installed by the
user and run in environments that communicate
with, but are separate from, the browser. The plug-
in architecture also creates obstacles for the user
and introduces security vulnerabilities. JavaScript,
however, was originally designed neither for large-
scale software projects nor for high-performance
media applications.

JavaScript has evolved into a powerful general-
purpose programming language with salient features
that include its prototypal (rather than class) struc-
ture, its closure-based scoping rules, and the fact that
its functions are first-class objects that can, for ex-
ample, be created at run time—one of the language’s
more powerful and poetic features. JavaScript has
some well-recognized design flaws (Crockford 2008),
but the contribution of libraries from thousands of
developers has significantly increased its usability.
Several libraries have become de facto standards,
such as jQuery for interacting with Web page com-
ponents (Resig 2006), and RequireJS for supporting
the modular development of large-scale software
projects (Chung 2011).

JavaScript engines have been showing tremendous
gains in performance since about 2008. The types
of objects flowing through a JavaScript program
cannot, in general, be predicted in advance for
optimization purposes. Thus, the run times tend to
be slower than native code. Modern browsers run
on engines (Google Chrome on V8, Safari on Nitro,
Firefox on IonMonkey) that use a wide variety of
optimizations that compile code dynamically, or
“just in time” (JIT). Current benchmarks comparing
JavaScript with Java show JavaScript to run on
average about three times as slowly as Java, while
requiring on average about half the memory and
half the code required for Java (Debian Project
2013). These “performance-enhancing” compilation
strategies are significant for demanding interactive
media applications, since JavaScript provides access
to the all the musically related technologies listed
in Table 1.

Further blurring the line between interpreted
and compiled languages is asm.js, which is being
developed at Mozilla (Herman, Wagner, and Zakai
2013). Asm.js is a subset of JavaScript that is

amenable to ahead-of-time (AOT) compilation into
efficient native code and that can be used as a target
language for compilers of other languages such as C
or C++.

The speedups due to JIT and AOT innovations
in JavaScript engines apply to “pure” JavaScript
code. When JavaScript APIs are defined for compu-
tational algorithms as part of the standards for Web
browsers, however, those underlying algorithms are
implemented in native code for each platform by the
browser providers and do not need to be compiled at
run time. This combination of efficient JavaScript
execution and precompiled audio components de-
fined by the new Web Audio API (discussed in
detail subsequently) promises to have a significant
impact on computer music possibilities within the
browser.

Server-Side JavaScript

The Web operates largely on a client/server model,
where clients run browsers that connect to servers
serving data such as Web pages or real-time chat
messages. Large, multi-threaded server applications,
such as Apache, have historically been used for
this purpose, and different server code components
are often written in a variety of different languages
(unlike typical client code).

Node.js (www.nodejs.org) is a software system for
building lightweight servers using JavaScript and
running on the V8 engine. Node.js has seen fast
and accelerating popularity since its introduction
in 2009. It uses an asynchronous method of calling
functions, so that the calling code does not block
while waiting for calls to complete. Possibly its most
outstanding advantage over alternatives for music
programmers is that code is written in JavaScript,
the same language used by browser applications,
permitting code reuse as well as reducing learning
and development time.

Clients generally access servers over wide area
networks (WANs). This raises the question of
latency for musical applications. Latency greater
than 10 msec between a gesture and a sounding
result can disrupt a performer’s practice, and latency
greater than 25 msec between performers can disrupt

Wyse and Subramanian 13

ensemble play (Cáceres and Chafe 2010). If a client
and server are on opposite sides of the world, the
speed of light limits the round trip from ever taking
less than 130 msec.

Many musical applications can exist comfortably
within wide area communication environments or
hybrid environments where some communications
are local (and thus fast) and others remote (and
slower). Freeman (2010) explored live Web-based
collaboration, and Canning (2012) used Node.js for
a central server in a dynamic, shared musical-score
environment over a WAN. For networked musical
applications that have more demanding latency
requirements, the client/server model can still work
with the server running on a local area network
(LAN), possibly even on the same machine as a
client.

Local client/server architectures are a natural
for many musical network applications such as
those built on star-topology networks (Weinberg
2005) where client communications are coordinated
through a hub. A LAN-based browser architecture
could also be used, for example, to serve instrumen-
tal interfaces similar to TouchOSC (Fischer 2013) or
Control (Roberts 2011) for real-time communication
with synthesis code running on a server. If such
systems were browser-based, clients could simply
navigate to a Web page to access their interface
(Roberts 2013; Wyse 2013 cf. “messageSurface”).
This is both less complicated and less error-prone
than manually downloading and installing applica-
tions. The browser/Node.js client/server structure
is very flexible and can be run on one machine,
a LAN, or a WAN, without changing a line of
code.

Another significant aspect of networked musical
applications is that client/server networking proto-
cols have evolved considerably since the beginning of
the millennium, when the primary browser commu-
nication model was based on a client “pulling” data
from a server, using a hypertext transfer protocol
(HTTP) request. This required a heavy overhead for
establishing a connection for each request, only to
have the connection immediately disappear after the
request was fulfilled. Browsers used persistent HTTP
connections behind the scenes to fetch multiple re-
sources from a common source, but such a facility

was not accessible to the client-side scripting layer.
With the WebSocket API (Hickson 2011), it is now
routine to establish persistent connections. These
minimize the overhead for ongoing communication,
such as subscription and push services, and allow
the reception (and two-way exchange) of data not
specifically requested. WebSockets are built on top
of the transmission control protocol (TCP), which
guarantees in-order and 100-percent packet deliv-
ery, though at the expense of higher latency. The
Socket.IO library (Rauch 2013) makes it convenient
to use WebSockets with similar code structure used
on the server side in Node.js as well as in the client
side.

The Web Audio API

The Web Audio API (Rogers 2012) is at the heart
of the emerging technologies that support com-
puter music in the browser. It is a JavaScript-API
specification developed by the W3C and designed
to support low-latency, sample-accurate playback
and processing of audio in a browser. It is based
on a “signal-flow graph” paradigm with nodes for
synthesis and processing, and connections defin-
ing the flow of audio signals between nodes. This
paradigm will be very familiar to users of the
graphical programming languages Max/MSP and
Pd. The components defined as part of the Web
Audio API standard are implemented in optimized
native code (typically C++) by browser platform
providers. Thus, the components achieve very high-
speed computation and low-latency throughput, as
well as prolonged battery life in the case of mobile
devices.

Our goal is neither to provide an introductory
tutorial on programming with the Web Audio API
(Smus 2011, 2013), nor to provide details on its
internal workings. Instead, we provide a simple code
listing to illustrate the basics of coding with the API
(see Figure 1), and then dive into several specific
issues of concern to prospective computer music
community “power users” of the API, such as the
ease-of-use, extensibility, and timing accuracy of the
system.

14 Computer Music Journal

var audioContext = new AudioContext();

var kFreq = 660, kDecayTime = 0.5, kStartTime = 1.5, kGain = 0.25;

var oscNode = audioContext.createOscillator();

oscNode.frequency.value = kFreq;

var gainNode = audioContext.createGain();

gainNode.gain.value = kGain;

gainNode.gain.setTargetAtTime(0.0, audioContext.currentTime, kDecayTime);

oscNode.connect(gainNode);

gainNode.connect(audioContext.destination);

// Start a little into the future.

oscNode.start(audioContext.currentTime + kStartTime);

// Stop when the sound decays by enough.

oscNode.stop(audioContext.currentTime + kStartTime + 12 * kDecayTime);

Figure 1. Generating a
decaying sine tone using
the Web Audio API. This
example illustrates the use
of the AudioContext class,
audio nodes, connections,
and event scheduling.

Synthesis

The specification of the Web Audio API provides
for native components including oscillators, bi-
quadratic filters, delay, dynamics compression,
wave-shaping, one-dimensional convolution, an
FFT-based spectrum-analyzer, audio-buffer sources,
media-stream sources and sinks, and units for spa-
tialization (including panning, Doppler shifting,
sound cones, and head-related transfer functions).
Some parameters can be used as sample-rate signals
to control, for example, envelopes. The number of
available units cannot compare to the 1,000 or so
predefined in Max/MSP. Still, the increasing speed of
JavaScript, the ability to script the signal-flow graph,
and the availability of a ScriptProcessor node for
expressing arbitrary audio-processing in JavaScript
make it possible to create and encapsulate more
complex structures into new JavaScript objects.

Compositionality (i.e., the ability to build larger
building blocks using smaller ones) has played a
central role in the design of many computer music
systems, such as Max/MSP, SuperCollider (McCart-
ney 2002), and ChucK (Wang and Cook 2003). In
Max/MSP, for instance, composition is achieved by
connecting objects using virtual wires and encap-
sulating a set of objects and their connections as a
“patch,” which can then on be treated as an object
in its own right. In programming languages such

as SuperCollider and ChucK, compositionality is
achieved through functions. We consider structural
compositionality in the next section; temporal com-
positionality is discussed later, as part of the section
on “Scheduling, Synchronization, and Latency.”

Structural Compositionality

The Web Audio API’s architecture is a signal-flow
graph that is, in the general case, compositional
in nature. Topologically, subgraphs can be treated
like nodes within a larger graph. Such composition
requires stable nodes, however, and not all the native
nodes provided by the API are stable. The Oscillator
and AudioBufferSource are unstable source nodes
since they are “single-use” only—that is, they can be
started and stopped only once. After a stop() call has
been issued, these nodes become useless. In fact, the
specification recommends that implementations
deallocate these nodes and the subgraphs that
depend on them at appropriate times, preferably as
soon as is possible. This behavior is referred to as
dynamic lifetime in the specification (Rogers 2012).
Although this feature may be technically efficacious
and help with some fine-grained voice control, the
disappearance of objects as a side effect of use will
be unfamiliar to most programmers, as well as to
the computer music community thinking in terms

Wyse and Subramanian 15

of the flow-graph model common to Max/MSP and
Pd. In addition, because source nodes are intended
to be ephemeral, these nodes cannot serve at the
boundaries of composition and must be encapsulated
into stable nodes to restore compositionality to the
overall system. We found such an encapsulation to
be still possible to do by using JavaScript objects
to mimic the connect/disconnect API of the native
nodes (Subramanian 2012). With such encapsulation,
it is possible to create JavaScript objects that model
instruments having polyphonic voices, to which
both global and per-voice effects can be applied.

ScriptProcessorNodes, or “script nodes,” permit
the execution of arbitrary JavaScript code to process
or generate audio samples. These nodes can be made
to satisfy the requirements for structural composi-
tion given some additional features implemented
in pure JavaScript (Subramanian 2013b). These fea-
tures, which include dynamic lifetime support and
sample-accurate scheduling, enable script nodes to
emulate the functionality provided by native nodes,
albeit with lower performance and the introduction
of additional delays.

Extensibility

We use the term extensibility to refer to the ability
to create arbitrary new node types that, from an API
user’s perspective, behave in the same manner as
native nodes (possibly with the cost of lower per-
formance). Extensibility is important in computer
music systems: First, to permit open-ended creative
possibilities for synthesis, and second, to enable
sharing of components within the community.
Script nodes, which can execute arbitrary JavaScript
code, satisfy the basic criterion for extensibility: Ex-
pressing arbitrary audio processing and generation
in JavaScript.

The Web Audio API architecture gives the impres-
sion that script nodes and native modes are “equal
citizens,” but this is actually not the case, for a num-
ber of reasons. The most significant reason is that the
native nodes are processed in a separate high-priority
audio thread, whereas script nodes are processed
in the Web page’s main thread, along with other
page-rendering and update events. Inter-process

communication introduces latency and jitter. Fur-
thermore, the native thread does not block to wait
for script nodes to complete, which often means
these script nodes must use larger buffer sizes than
the native pipeline, to avoid audio glitches. The
architecture is designed this way because arbitrary
JavaScript cannot be permitted in the high-priority
audio thread, for security reasons as well as to
ensure low-latency, glitch-free audio when using
the native nodes. Although alternatives, such as
using “Web workers,” have been proposed to pro-
cess audio in JavaScript outside the main thread
(Thereaux 2013), script nodes, for now, are likely to
require instantiation with buffer sizes of 1,024 sam-
ple frames or more. The current implementations
of the Web Audio API in WebKit browsers, such
as Safari and Google Chrome, impose a two-buffer
delay on script nodes—i.e., even a “pipe-through”
script node would delay the audio by two buffer
durations. The effect of this extra delay, and of the
interruptions to audio due to page rendering and
network events, is to prevent script nodes from
serving as general-purpose components to extend
the collection of native nodes with new node types,
except in the cases where the delay is acceptable
and where rich interactive graphics and low-latency
networking are not required.

Wrapping the Web Audio API

There has been an explosion of commercial and
developer-contributed libraries designed to hide un-
derlying code complexity, to supply developers with
convenient tools, and to provide a higher level API
targeting the needs of a specific user group. One such
library that wraps the Web Audio API to provide a
sound designer interface is WAAX (Choi and Berger
2013). For example, it requires only a single line
of code to create an AudioBufferSourceNode with
a buffer filled from a file, rather than the some 16
lines it takes to achieve the same functionality using
raw API calls. WAAX includes an integrated devel-
opment environment, as well as straightforward
ways of creating graphical user interface objects for
controlling AudioParams.

16 Computer Music Journal

The Web Audio API is a sound developer’s
interface rather than a general application devel-
oper’s interface. Most application developers are
not sound developers, but sound users, and they
currently control sounds using a small handful of
methods with names like “play”, “stop”, and, for
three-dimensional audio, “setPosition” and “setLis-
tenerPosition”. We have developed the jsaSound
library (Wyse 2013 cf. “jsaSound”) in recognition
of the distinction between (1) interactive sound
developers and (2) interactive sound users. It hides
some of the complexity of using the Web Audio API
(e.g., ephemeral source nodes), provides a set of tools
for scheduling events (e.g., rhythmic patterns), and
supports the creation of a consistent and simple API
for all sound models. The API adds one key method
to the familiar play() and stop() methods used for
triggered sounds, and that is the setParameter()
method that can be used with a parameter name or
index as an argument, and that uses values in either
parameter-specific ranges or the normalized range
[0, 1].

Doing It All in JavaScript

Earlier, we mentioned the problems with combining
script nodes with native nodes. These problems
vanish, however, if all the audio work is done within
a single script node, provided the main thread is
mostly free for audio work. The disadvantage of this
approach is that we get neither the functionality
and speed advantages of the native nodes nor
the latency benefits of running audio code in a
high priority audio thread. We do, however, gain
some interesting capabilities not possible with
native nodes, such as single-sample-delay feedback
systems and oversampling. Furthermore, script
nodes may become more capable components in the
future, using coding techniques that can be highly
optimized, such as those defined in the working
draft of asm.js (Herman, Wagner, and Zakai 2013).
Given the current architecture, script nodes would
still be subject to interruptions from other activity
in the main thread, such as user interaction.

Modern JavaScript engines compile code to
native code when the opportunity arises. Using

eval(), JavaScript can serve as the target language
for optimizing code generators that deal with higher
levels of abstraction, such as audio-signal flow
graphs. In this sense, JavaScript serves the same role
that assembly languages do as the target for com-
pilers of higher-level programming languages such
as C, C++, or Objective-C. Roberts, Wakefield, and
Wright (2013), for example, have developed a system
called Gibberish, which exploits this technique.

We have now seen that, although it is possible
to supplement the API in pure JavaScript to provide
compositionality, the script node’s limitations
prevent the system from being extensible in ways
computer musicians would demand, unless they are
willing to forego native audio components. Next,
we consider timing issues and synchronization with
other computational components.

Scheduling, Synchronization, and Latency

The architecture implied by the specification of the
Web Audio API raises some interesting problems
for synchronization of other musical and visual
activities with the audio processing. We begin
our discussion with an examination of composing
events “in time.”

Temporal Compositionality

While structural compositionality is important for
developing and building on sound synthesis tech-
niques, temporal compositionality is central to the
“music” in “computer music.” Precise scheduling
of events with reference to a common clock is neces-
sary to ensure that temporal relationships between
events desired by the composer or performer are
not violated. Towards this end, the Web Audio API
provides for sample-accurate scheduling of samplers,
oscillators, and parameter curves.

Oscillator and AudioBufferSource nodes both
have start() and stop() methods that take time (in
seconds) as an argument and schedule their actions
with sample-accuracy, provided the times are spec-
ified to be greater than audioContext.currentTime.
AudioParams come in a-rate (audio rate) and k-rate

Wyse and Subramanian 17

(control rate) varieties, providing values for each
sample frame or at the start of each block of 128
sample frames, respectively. One powerful feature
is that audio signals generated by nodes can also be
used to control certain AudioParams, such as gain,
frequency, and delay time, at the audio sample rate
for native nodes.

Real-time interactive music systems require
events to be scheduled as close as possible to “now.”
In general, the longer the delay, the worse the
system’s response will be. Programmers using the
API for such applications will need to build their own
schedulers (or use higher-level libraries that wrap
the API) to queue up future events “just in time.”
For this to work well in the case of the Web Audio
API, the weak scheduling facilities of JavaScript
need to be used in conjunction with the sample-
accurate scheduler provided by the Web Audio API,
since the latter cannot be used to call back into
JavaScript. Wilson (2013) discusses some of the real-
time scheduling issues, and in particular, techniques
for using timer callbacks to schedule events at short
times into the future so that scheduling can remain
sensitive to real-time input. The standard JavaScript
timers—setInterval() and setTimeout()—are subject
to large amounts of jitter, making them unsuitable
for real-time interactivity. So the clock of choice for
this purpose has become requestAnimationFrame()
(Irish 2011), variants of which are available in
most browser environments for callbacks at the
time of each screen redraw. Another advantage of
requestAnimationFrame() is that the callback is
passed a timestamp corresponding to the time at
which any visuals computed in the callback will
be displayed. This is required for good audio-visual
synchronization.

We have developed a Scheduler object for a library
that uses the underlying sample-accurate scheduler
along with requestAnimationFrame() to provide
abstractions that separate the specification of tem-
poral relationships between musical events from the
performance of these specifications. This separation
enables sample-accurate temporal composition. Our
scheduler also supports tracks with their own tempo
controls that can be scheduled to change over time
by other tracks. Popular patterns such as temporal re-
cursion can also be expressed with sample-accurate
timing. The “Steller Explorer” features code

illustrating such uses of this scheduler and is in-
cluded in the “Steller” library (Subramanian 2013c).

Synchronization with Graphics

At the time of this writing, synchronization of
audio with graphics can be achieved within a
tolerance of one audio-buffer duration, which is
the duration of each chunk of audio computed
by an implementation of the Web Audio API.
Ideally, this tolerance would be independent of the
audio-buffer duration and be determined only by
the time interval between displayed visual frames.
Most desktop, iOS, and Android systems run their
displays at 60 fps, which sets this tolerance at
around 16 msec. Given a visual frame rate of 60 fps,
good audio-visual synchronization requires that
the audio time advances at least 120 times per
second. This places an upper limit of 256 samples
on the buffer size at a sampling rate of 44,100 Hz,
assuming buffers need to be in sizes that are in
powers of two. Because one of the goals of the Web
Audio API is to bring low-latency audio capability
to the web platform, implementations have thus
far consistently chosen low buffer durations of 256
samples or less. The current draft of the standard,
however, does not place upper limits on buffer
durations in implementations.

For the synchronization tolerance to be inde-
pendent of the audio-buffer duration, the ability
to accurately map audio times to system times
is required. Proposals have been made recently
(Berkovitz 2013) for additional support to relate
the audio time stamps based on “currentTime” to
the high-resolution DOMHighResTimeStamp type
(Mann 2012). This will also permit precise synchro-
nization with MIDI systems, since the proposed Web
MIDI API makes use of DOMHighResTimeStamps.
Currently, precision of synchronization with MIDI
is limited to the buffer duration of the implementa-
tion, which is not guaranteed to be identical across
systems. This may lead to inconsistent experiences.

There is also a variable visual latency between
issuing drawing commands and the scene appearing
on the screen. This differs with the target technology
used: Scalable Vector Graphics (SVG), Canvas 2D, or
the Web Graphics Library (WebGL). Unfortunately,

18 Computer Music Journal

we know of no way to find out about these delays
using any of the APIs exposed via JavaScript. A pos-
sible workaround is to use device and configuration
profiling in combination with a database of measured
delays to achieve the necessary synchronization.
The software application Tala Keeper (Subramanian
2013a), a visual metronome for the talas of South
Indian classical music, provides an example of
the scheduled synchronization possible with the
current implementations of the Web Audio API.

Latency

Reliable, low-latency audio output is a key re-
quirement for interactive music applications. As
discussed by Kasten and Levien (2013) at the Google
IO conference, language design, garbage collection,
blocking and non-blocking code, threading, and
shared memory access are all factors that influence
the action-to-audio response time and require care-
ful design of the audio subsystem. Here we present
some indicative measurements of audio latency
made on a current Web Audio API implementation
and compare it with the state-of-the-art native
performance running on the same hardware.

Comprehensive technical performance testing
is beyond the scope of this article. To give some
indication of the response-time capabilities of the
browser platform, we tested the audio latency of the
Google Chrome browser in response to (a) mouse
clicks and (b) microphone input, and compared
it with a native application (Max/MSP) running
on the same hardware and operating systems.
Three hardware platforms were used for testing: A
MacBook Pro running Mac OS X, a MacBook Pro
running Windows 8, and a Dell Laptop running
Windows 7. (See the Appendix for details of the
testing platforms.)

In each case, data were collected as two-channel
audio, with one channel recording the input event (a
mouse click or audio event) and the other channel
recording the system output (either a synthetic noise
burst in response to a mouse click, or a signal from
the microphone passed through the system). Table 2
shows the results.

From Table 2 it can be seen that the native
application latency is lower for both mouse and

Table 2. Latency for Native and Browser
Applications

Max/MSP Browser

a. Mouse button click to sound out (msec)
Mac OS X 29 36
PC Windows 7 711 / 492 76
Mac Windows 8 991 72

b. Microphone input to sound out (msec)
Mac OS X 4 16
PC Windows 7 1001 / 342 55
Mac Windows 8 851 54

Comparison of input-to-sound-output latency (in msec) for
native (Max/MSP) and browser (Google Chrome) applications
for mouse click and microphone input.
Notes: 1Using the default Microsoft OS audio driver.
2Using ASIO4ALL drivers.

microphone input-to-sound latency (except when
the default Microsoft OS drivers are used for the
native application). The difference in throughput be-
tween the browser and native applications is vastly
improved over historical plug-in architectures,
however, and continues to improve.

I/O and Communication Protocols

Computer music systems depend on fast and reliable
input/output (I/O) facilities for parameter control,
and collaborative musical performance requires
networking facilities. The upcoming Web MIDI
API provides access to controllers and synthesizers
connected to the computer running the browser, and
WebRTC provides for audio and video input and real-
time peer-to-peer (P2P) communication capabilities.
In this section, we discuss these technologies
and compare the capabilities of WebRTC with
JackTrip.

OSC (Wright 2005) has become a standard pro-
tocol for computer music communication, and it
is supported by a large base of musical software.
Although there are, unfortunately, no published
plans for supporting OSC within the browser plat-
form, there are open-source libraries for managing
OSC that include creating the message format from
other data structures, parsing incoming messages,
and converting to and from user datagram protocol

Wyse and Subramanian 19

(UDP) packets for network communication (Wyse
2013 cf. “json2osc”).

MIDI capabilities are being developed in the
form of the Web MIDI API (Kalliokoski and Wilson
2013), and are oriented toward providing access to
connected MIDI devices for real-time input and
output control (rather than toward rendering MIDI
files). Though imminent, a full implementation of
the standard has not yet been released at the time
of this writing. Plug-ins already exist, however, that
provide similar capabilities within the browser (e.g.,
www.jazz-soft.net).

WebRTC is another W3C standard in draft
(Bergkvist et al. 2013) concerned with real-time
communication (RTC). It is relevant to computer
music for two different reasons. First, the API
provides access to the video, microphone, and line
inputs on the local machine. Access to local media
streams has been restricted within browsers because
of obvious security and privacy reasons. In the
emerging standard, this is handled by requiring
some form of user input to enable the access. The
second way WebRTC is relevant for computer
music is that it supports the P2P exchange of
audio and video media over a local or wide-area
network without the need to route streams through
a central server (once the peer connection has been
established). It thus addresses some of the same
functionality currently provided to the computer
music community by JackTrip (Cáceres and Chafe
2010), which was developed by the Soundwire
group at Stanford University’s Center for Computer
Research in Music Acoustics.

The Web Audio API can work with the WebRTC
method getUserMedia() to gain access to the media
streams from the audio and video input (as well as
from networked peers), and defines a MediaStrea-
mAudioSourceNode type that wraps media streams.
This node can be connected to other nodes in an
audio graph just like any other AudioNode, allowing
the signal to be further processed or analyzed.

Latency and reliability are critical issues for
streaming audio in real-time performance envi-
ronments. WebRTC was designed for P2P media
communications for applications such as video chat.
For network communication, WebRTC defaults to
using UDP (which has faster but less reliable packet

delivery than does TCP), but it falls back to other
protocols if UDP fails for any reason. (There is also
a separate channel for “signaling” meta-information
about the communication.) The current open-source
implementation of WebRTC (www.webrtc.org) sup-
ports only one-to-one communication, but libraries
already exist for richer networks. WebRTC also has
a built-in packet loss scheme and manages network
address translation.

WebRTC uses the Opus audio codec by default.
Opus uses a lossy compression scheme and supports
multiple channels, variable and constant bit rates
up to 510 kbits/sec, sample rates up to 48 kHz, and
frame sizes down to 2.5 msec. These specifications
meet the needs of many music applications, but
do not reach JackTrip’s quality. JackTrip supports
uncompressed transmission (which is thus lossless
and has no delay due to a compression algorithm),
has sub-millisecond frame sizes (and concomitantly
small packet sizes), and uses redundant streams to
minimize the packet loss characteristic of UDP.

WebRTC includes an RTCDataChannel API.
This supports the P2P exchange of arbitrary data
that can be used in conjunction with audio and
video. The data channel could be used to send
OSC data, for example, which could control sound
synthesis in synchronization with the audio and/or
video streams being received. This assumes access
to the necessary time-stamp data will be available
in future versions of this API.

Now that we have examined most of the major
individual pieces of the browser technology ecosys-
tem that are relevant to computer music, we will
take a step back to offer some concluding remarks
on the platform as a whole.

Summary and Discussion

Artists using the computer to make sound and
music draw on a wide variety of tools to address
their highly demanding needs. These diverse needs
include high-quality sound synthesis, instrument
and interface design tools, robust low-latency and
low-jitter communications, musically oriented
development environments, interaction between
devices over local and wide area networks, and

20 Computer Music Journal

high-quality multi-channel synthesis. Different
creative goals make different tools appropriate in
different contexts.

The browser offers some unique capabilities
for musicians due to its natural connectedness,
its huge developer community, and the ease of
access and portability of work it provides. It is true
that important forays into the use of the browser
for music have been made for over 15 years. For
the platform to become central to the computer
music community, however, not only will it have
to be useful for some composers exploring certain
kinds of music, but it will have to approach the
performance of many different special-purpose tools
that musicians use today on each of many different
fronts. That is what we mean by “viable.”

Emerging browser standards from WC3, such as
the Web Audio API and WebRTC, are key enablers
because they are bringing native computational
speed and access to media resources to the platform
capabilities. JavaScript, the language of browsers,
has become much faster, has been extended with
libraries that vastly increase its usability, and can
now be used for coding both server- and client-side
applications.

On some fronts the gap between the browser and
native platforms has closed: The browser can support
music with multiple channels and reasonably high
sample rates, it uses a language that can run demand-
ing audio code, and it provides (or will soon provide)
access to local I/O channels for MIDI, video, and au-
dio. On others fronts—such as OSC support, graph-
ical programming languages, and input-to-output
latency—the gap is still open, but appears to be clos-
ing. Finally, there are some “pain points” that remain
obstructions to widespread adoption of the platform
for the computer music community, and the path to
a solution is not at all clear. First, as long as audio is
susceptible to “glitching” because of a user-interface
or garbage-collection event, concert-quality com-
puter music performance will be impossible on the
platform. Second, significant inherent limits on
the extensibility of the synthesis engine will also
prevent its widespread use among sound and in-
strument designers, who have excellent alternative
platforms for their creativity. No alternatives to the
beleaguered, general-purpose extension mechanism

currently available—ScriptProcessorNodes—are
visible on the horizon.

There are strong incentives for developing music
systems in the browser environment, and the
community of Web developers is huge. For that
reason, we expect the growth in capabilities to
continue apace, for example, through developer-
contributed libraries. Two critical outstanding issues
we have identified—timing and extensibility—need
to be addressed by the developers of core standards
and systems, in conjunction with the providers of
operating systems and browsers, before the platform
will be viable for the most demanding computer
music applications. Nonetheless, the emerging
capabilities of the browser already offer many new
creative possibilities for musicians to explore.

Acknowledgments

This work was supported by a Singapore MOE grant
FY2011-FRC3-003, “Folk Media: Interactive Sonic
Rigs for Traditional Storytelling.” Thanks to Gerry
Beauregard for his insights and assistance in testing.
Deep gratitude goes to Chris Rogers, previous editor
of the W3C Web Audio API, for valuable and detailed
feedback on the draft of this article (as well as the
tireless effort he and the other W3C Audio Working
Group members have put in to developing the new
specification and implementations). We would also
like to acknowledge the important contribution
made by three peer reviewers who were clearly
drawn from the pool of researchers and musicians
we most admire.

References

Bergkvist, A., et al. 2013. “WebRTC 1.0: Real-Time
Communication between Browsers.” Available online
at www.w3.org/TR/webrtc. Accessed August 2013.

Berkovitz, J. 2013. “W3C bug report #20698, comment
23.” Available online at www.w3.org/Bugs/Public/
show bug.cgi?id=20698#c23. Accessed June, 2013.

Borgeat, P. 2013. “Interactive Networked Web Audio
Experiences.” Network Music Festival. Available
online at networkmusicfestival.org/2013/interactive/.
Accessed July 2013.

Wyse and Subramanian 21

Burk, P. 1998. “JSyn: A Real-Time Synthesis API for Java.”
In Proceedings of the International Computer Music
Conference, pp. 252–255.

Cáceres, J., and C. Chafe. 2010. “JackTrip: Under the
Hood of an Engine for Network Audio.” Journal of New
Music Research 39(3)183–187.

Canning, R. 2012. “Real-Time Web Technologies in the
Networked Performance Environment.” In Proceedings
of the International Computer Music Conference, pp.
315–319.

Choi, Hongchan, and J. Berger. 2013. “WAAX: Web Audio
API eXtension.” In Proceedings of New Interfaces for
Musical Expression, pp. 499–502.

Chung, A. 2011. “RequireJS: A JavaScript Module Loader.”
Available online at requirejs.org. Accessed June 2013.

Crockford, D. 2008. JavaScript: The Good Parts. Se-
bastopol, California: O’Reilly.

Debian Project. 2013. “JavaScript Benchmarks.” Available
online at benchmarksgame.alioth.debian.org/u32/
benchmark.php?test=all&lang=v8&lang2=Java&data=
u32. Accessed June 2013.

Duckworth, W. 1997. “Cathedral.” Available online at
www.billduckworth.com/cathedralproject. Accessed
August 2013.

Fischer, R. 2013. “TouchOSC.” Available online at
hexler.net/docs/touchosc. Accessed June 2013.

Freeman, J. 2010. “Web-Based Collaboration, Live Musical
Performance, and Open-Form Scores.” International
Journal of Performance Arts and Digital Media 6:(2)149–
170.

Herman, D., L. Wagner, and A. Zakai. 2013. “asm.js:
Working Draft 17 March 2013.” Available online at
asmjs.org/spec/latest. Accessed June 2013.

Hickson, I. 2011. “The WebSocket API: W3C Work-
ing Draft.” www.w3.org/TR/2011/WD-websockets
-20110419. Accessed June 2013.

Irish, P. 2011. “requestAnimationFrame for
Smart Animating.” www.paulirish.com/2011/
requestanimationframe-for-smart-animating/.
Accessed June, 2013.

Kalliokoski, J., and C. Wilson. 2013. “Web MIDI API.”
Available online at webaudio.github.io/web-midi-api.
Accessed August 2013.

Kasten, G., and R. Levien. 2013. “Google IO Presen-
tation.” Available online at developers.google.com/
events/io/sessions/325993827. Accessed June 2013.

Mann, J. 2012. “High Resolution Time: W3C Recommen-
dation.” Available online at www.w3.org/TR/hr-time/.
Accessed June 2013.

McCartney, J. 2002. “Rethinking the Computer Music
Language: SuperCollider.” Computer Music Jour-
nal 26(4):61–68.

McCormick, C., and S. Piquemal. 2013. “WebPd” Avail-
able online at github.com/sebpiq/WebPd. Accessed July
2013.

Rauch, G. 2013. “Socket.IO.” Available online at socket.io.
Accessed June 2013.

Resig, J. 2006. “jQuery: Write Less, Do More.” Available
online at jQuery.com. Accessed June 2013.

Roberts, C. 2011. “Control: Software for End-User
Interface Programming and Interactive Performance.”
In Proceedings of the International Computer Music
Conference, pp. 425–428.

Roberts, C. 2013. “interface.editor.” Available online at
github.com/charlieroberts/interface.editor. Accessed
June 2013.

Roberts, C., and J. Kuchera-Morin. 2012. “Gibber: Live
Coding Audio in the Browser.” In Proceedings of the
International Computer Music Conference, pp. 64–69.

Roberts, C., G. Wakefield, and M. Wright. 2013. “The Web
Browser as Synthesizer and Interface.” In Proceedings
of the International Conference on New Interfaces for
Musical Expression, pp. 313–318.

Rogers, C. 2012. “Web Audio API: WC3 Editor’s Draft.”
Available online at dvcs.w3.org/hg/audio/raw-file/
tip/webaudio/specification.html. Accessed June 2013.

Smus, B. 2011. “Getting Started with Web Audio API.”
www.html5rocks.com/en/tutorials/webaudio/intro.
Accessed June 2013.

Smus, B. 2013. Web Audio API. Sebastopol, California:
O’Reilly.

Subramanian, S. K. 2012. “GraphNode.” Available on-
line at github.com/srikumarks/steller/blob/master/
src/graphnode.js. Accessed June 2013.

Subramanian, S. K. 2013a. “Tala Keeper.” Available online
at talakeeper.org/talas.html. Accessed June 2013.

Subramanian, S. K. 2013b. “Taming the ScriptProces-
sorNode.” Available online at sriku.org/blog/2013/
01/30/taming-the-scriptprocessornode. Accessed July
2013.

Subramanian, S. K. 2013c. “Steller Explorer” Available
online at sriku.org/demos/steller explorer. Accessed
July 2013.

Thereaux, O. 2013. “Resolution at the 2013-03-27 f2f
meeting.” Available online at www.w3.org/Bugs/
Public/show bug.cgi?id=17415#c94. Accessed June
2013.

Wang, G., and P. R. Cook. 2003. “ChucK: A Concurrent,
On-the-Fly Audio Programming Language.” In Proceed-
ings of the International Computer Music Conference,
pp. 219–226.

Weinberg, G. 2005. “Interconnected Musical Networks:
Toward a Theoretical Framework.” Computer Music
Journal 29(2):23–39.

22 Computer Music Journal

Wilson, C. 2013. “A Tale of Two Clocks—Scheduling
Web Audio with Precision.” Available online at
www.html5rocks.com/en/tutorials/audio/scheduling.
Accessed June 2013.

Wright, M. 2005. “Open Sound Control: An Enabling
Technology for Musical Networking.” Organised
Sound 10(3):193–200.

Wyse, L. 2003. “A Sound Modeling and Synthesis System
Designed for Maximum Usability.” In Proceedings of
the International Computer Music Conference, pp.
447–451.

Wyse, L. 2013. “Software Projects.” Available online
at anclab.org/software/software.html. Accessed June
2013.

Appendix

Latency testing was performed using a 44.1kHz
sampling rate on: (1) a Dell XPS laptop, Windows 7,

Intel Core 2 Duo at 2.4 GHz, and (2) a MacBook Pro,
15-in., mid 2010, Mac OS X 10.8.3, Intel Core i7 at
2.66 GHz.

Both hardware platforms were running Max 6.0
with the following audio settings:

Driver: Ad directsound (default operating system)
driver

Thread priority: Highest
Latency: 50 msec
IO vector size: 32
Signal vector size: 32
CNMAT units for OSC parsing

For the ASIO driver configuration:
Driver: ASIO4ALL
I/0 vector size: 512
Signal vector size: 2
For the browser tests: Google Chrome version

27.0.1453.93
All measurements are based on five trials. Vari-

ance was negligible and is thus not reported here.

Wyse and Subramanian 23

