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One of the decisions that arise when designing a neural network for any applica-
tion is how the data should be represented in order to be presented to, and possibly
generated by, a neural network. For audio, the choice is less obvious than it seems
to be for visual images, and a variety of representations have been used for different
applications including the raw digitized sample stream, hand-crafted features, ma-
chine discovered features, MFCCs and variants that include deltas, and a variety
of spectral representations. This paper reviews some of these representations and
issues that arise, focusing particularly on spectrograms for generating audio using
neural networks for style transfer.
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1 Introduction

Audio can be represented in many ways, and which one is “best” depends on the application
as well as the processing machinery. For many years, feature design and selection was a key
component of many audio analysis tasks and the list includes spectral centroid and higher-
order statistics of spectral shape, zero crossing statistics, harmonicity, fundamental frequency,
and temporal envelope descriptions. Today, the general wisdom is to let the network determine
the features it needs to accomplish its task.

For classification, particularly in speech, Mel Frequency Cepstral Coefficients (MFCCs)
which describe the shape of a spectrum, have a long history. Although they are a lossy
representation, they are used for their classification and identification effectiveness even at
very reduced data rates compared to sampled audio. MFCC’s have also been used for environ-
mental sound classification with convolutional neural networks [Piczak, 2015], although the
reported 65% classification accuracy might be helped with a less lossy representation. Raw
audio samples have also been used for event classification, for example in SoundNet [Aytar
et al., 2016].
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2 Sound Representation for Generative Networks

For generative applications, a representation that can be used to synthesize high-quality sound
is essential. This rules out “lossy” representations such as MFCCs and many hand-crafted
feature sets, but still leaves several options.

Raw audio samples are lossless and trivially convertible to audio. WaveNet [van den Oord
et al., 2016], is a deep convolutional net (not recurrent) that uses raw audio samples as input
and is trained to predict the most likely next sample in a sequence. During the generative phase,
each predicted sample is incorporated into the sequence used to predict the following sample.
With “conditioning” information (such as which phoneme is being spoken) provided along with
input, interesting parametric control at synthesis time is possible. WaveNet implementations
run as deep as 60 layers, and raw audio is typically sampled at rates ranging from 16K to 48K
per second, so synthesis is slow at many minutes of processing per second of audio.

Magnitude spectra can also be used for generative applications given techniques for deriving
phase from properties of the magnitude spectra to reconstruct an audio signal. The most often-
used phase reconstruction technique comes from Griffin and Lim [1984], which is implemented
in the Librosa library [McFee et al., 2015]. However, it involves many iterations of forward
and inverse Short-time Fourier Transforms (STFTs), and is fundamentally not real time (the
whole temporal extent of the signal is used to reconstruct each point in time), and is plagued by
local minima in the error surface that sometimes prevent high-quality reconstruction. Recent
research has produced methods that are theoretically and in practice real time [Zhu et al.,
2007] [Prusa and Sgndergaard, 2016]; methods that can produce very convincing transients
(temporally compact events) [Prusa, 2017]; and non-iterative methods of reasonable quality
that are as fast to compute as a single STFT [Beauregard et al., 2015].

Spectrograms are 2D images representing sequences of spectra with time along one axis,
frequency along the other, and brightness or color representing the strength of a frequency
component at each time frame. This representation is thus at least suggestive that some of
the convolutional neural network architectures for images could be applied directly to sound.

Style transfer [Gatys et al., 2015] is a generative application that uses pre-trained networks
to create new images combining the content of one image and the style of another. Because
of the plethora of image networks available (e.g. VGG-19 [Simonyan and Zisserman, 2014]
pre-trained on the 1.2M image database ImageNet [Deng et al., 2009]) and the dearth of
networks trained on audio data, the question naturally arises as to whether the image nets
would be useful for audio style transfer representing audio spectrogram images. We ran some
experiments with the pre-trained VGG-19 network, with the goal of superimposing “style”
or textural features from one spectrogram on the “content” or structural features of another.
The features were defined as in [Gatys et al., 2015], so that content features were just the
activations in deeper layers of the network, and style features were defined as the Gram matrix,
a second-order measure derived from activations on several shallower layers.

In order to use spectral data for this purpose, several issues had to be addressed. Because
image processing networks work on 3-channel RGB input, the single-channel magnitude values
of the spectrograms must be duplicated across 3 channels to work with the pre-trained net-
work. Since color channels are processed differently from each other in the neural network, the
post-processing synthesized color image must be converted back to a single channel based on
luminosity to be meaningful as a spectrogram.

Although processing sonograms as images “works” in the sense that visual characteristics
are combined in interesting nonlinear ways, the resulting sounds are not nearly as compelling



as style transfer for visual images is. The issue is likely due to the difference between how
sonic objects are represented in spectrograms compared to how visual objects are represented
in 2D, and the way convolutional networks are designed to work with these images.

Convolutional neural networks designed for images use 2D convolution kernels that share
weights across both the x and the y dimensions. This is based in part on the notion of
translational invariance, which means that an image feature or object is the same no matter
where it is in the image. For sonic objects in the linear-frequency sonogram, this is true
when objects are shifted in the x dimension (time), but not when they are shifted in the y
dimension (frequency). Audio objects consist of energy across the frequency dimension, and as
a sound is raised in pitch, its representation not only shifts up, but changes in spatial extent.
A log frequency representation may go some way to addressing this issue, but the non-local
distribution of energy across frequency of an audio object might still be problematic for 2D
convolution kernels. Sound images also present other challenges compared to visual images
- for example, sound objects are “transparent” so that multiple objects can have energy at
the same frequency, where a given pixel in a visual image almost always corresponds to only
one object. In addition, audio objects are non-locally distributed over a spectrogram whereas
visual objects tend to be comprised of neighboring pixels in an image.

Dmitry Ulyanov Ulyanov and Lebedev [2016] reports in a blog posting about using convo-
lutional neural networks in a different way for audio style transfer. He uses spectrograms, but
instead of representing the frequency bins as the y dimension in an image, he considers the
different frequencies as existing at the same point in a 1D representation as stack of “channels”
in the same way the 3 channels for red, green, and blue are stacked at each point in a 2D visual
image. As in image applications, the convolution kernel spans the entire channel dimension;
there is no small shared-weight convolution kernel that shifts along the channel dimension as
it does in the spatial dimensions. The number of audio channels, typically 256 or 512, is much
greater than the 3 channels used for color images, and the vertical dimension is reduced to one.

There are two remarkable aspects to the network used by Ulyanov for style transfer that
differentiate it from the “classical” approach described by Gatys et al. [Gatys et al., 2015].
First, the network uses only a single layer. The network activations driving content generation
and those driving style generation come from one and the same set of weights. The difference
between content and style thus comes not from the depth of the layers, but only from the
difference between first-order and second-order measures of activation. Secondly, the network
was not pre-trained, but uses random weights. The blog post claims this unintuitive approach
generated results as good as any other, and the sound examples posted are indeed compelling.

To further investigate the utility of spectrogram representations and the hypothesis that
weights are unimportant for style transfer, a network with two convolutional layers and two
fully-connected layers was trained on the ESC-50 data set [Piczak, 2015] consisting of 2000
5-second sounds. Sounds were represented as spectrograms consisting of 856 frames with 257
frequency bins, and the network was trained to recognize 50 classes. We then compared pre-
trained and random weight values for style transfer!.

Sonograms generated with different weight and noise conditions are shown in Figure 1. The
content target is speech and the style target is a crowing rooster. This study shows a significant

The network was trained with 2 convolutional layers of 2048 and 64 channels resp., used relu activation
functions, and each was followed by max pooling of size 2 with strides of 2. A fully connected final layer had
32 channels. A secondary classification was performed simultaneously (multi-task learning) as regularization,
where sounds were divided into 16 balanced classes based on spectral centroid. Details and sound examples
at http://lonce.org/research/audioST



difference between random and pre-trained weights. Additionally, the network trained for audio
classification does not introduce the audible artifacts of the kind we found using an image-
trained network. Although style transfer does work without regard to weights based only on
the first-order and second-order content and style matching strategy, a network trained for
audio classification appears to generate a more integrated synthesis of content and style.
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Figure 1: a) With trained network weights and no added image noise, the result shows well-
integrated features from both style and content. b) With random weights, style
influence is hard to detect and content sounds noisy. ¢) Adding noise to the initial
image results in sound that has the gross amplitude features of the content and a
noisy timber barely identifiable with the style source d) Random weights and added
image noise cause the loss of any sense of either content and style.

For the architecture we used, style suffers more than content from noise effects, whether
added to the initial image, or in the form of random weights. Also, to compensate for the
reduction of parameters in the network when arranging frequency bins as channels, it is neces-
sary to dramatically increase the number of channels in the network layer(s) in order for longer
timescale style features to appear in the synthesis. Ulyanov used 4096 channels, we used 2048
in the first layer. This is both greater than the typical channel depth used in image processing
networks, and greater than was necessary to pre-train the network on the classification task.

3 Summary

Spectral representations may have a role in applications that use neural networks for classifica-
tion or regression. They retain more information than most hand-crafted features traditionally
used for audio analysis, and are of lower dimension than raw audio. The are particularly use-
ful for generative applications due to available techniques for reconstructing high-quality audio



signals. Linear-frequency sonograms can not be treated in the same was as images are by 2D
convolutional networks, but other approaches such as considering frequency bins as channels
are being explored and show promising results.
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