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Abstract

An overview of generative sound models is presented.
We discuss the benefits they offer in a variety of media
contexts including indexing and retrieval, compression,
sonification, traditional media and interactive media
production. We examine ways in which working with
sound models differs from working with sound. Model
design is identified as an outstanding research issue,
and several strategies for addressing this challenge are
presented.

1. Introduction

Sound is usually used in media in an unstructured
form, as a string of numbers representing discrete
samples in time. Even when compressed, high-quality
audio can take up large amounts of memory and
bandwidth. The unstructured form also provides no
information about how the sound was generated -
information that would be useful for indexing and
retrieval as well as for interactively controlling the
sound in ways that are germane to its source. Sound
models address these issues.

A generative sound model is an algorithm for
synthesizing a class of sounds under parameterized
control, typically in real time. Media modeling is
attracting interest because of the growth in realtime
interactive applications such as computer games where
the potential media experience is far too open-ended for
all possibilities to be prerendered. For interactive
media, objects are modeled so that they can respond to a
variety of input from their environment and render
themselves appropriately. For example, a single 3D
“Shrek” character model can run, jump, bend over, and
generate facial expressions that are within its range of
potential behavior - enabled, but not specifically
envisioned by the model designer.

There are many applications areas than can benefit
from sound models. Most of the benefit to applications

stem from three key advantages that models offer over
traditional “flat” representations of sound:
a) they use much less memory (or bandwidth),
b) they afford realtime flexibility and interactivity,
¢) they can function as description of the sounds
they generate.

2. Applications

Sound models are an obvious solution for media that is
itself interactive such as computer games. However,
even when the media product is fixed as in television
and film, the production process can still reap great
benefits from the flexibility inherent in models. For
example, sound for films is almost never recorded at the
same time and location as the scene is shot, but is
instead added later in a recording studio. In an elaborate
process called Foley, sound effects are created by Foley
artists who watch a film once for all the incidental
sounds that are needed, and then armed with an
assortment of noise making materials, surfaces for
walking on, etc., recreate all the sounds for the scene as
they watch the film for proper synchronization.

The Foley process is highly interactive and realtime,
but is expensive in human and studio resources. With an
adequate set of sound models and appropriate physical
controllers, Foley could be done in a desktop
environment (Cook 2002), thereby adding tremendous
value to the audio production process, rather than to the
delivered media itself as it does for computer games.

Graphics modeling has been the focus of intense
research and development over the past decade, and has
been a key enabling factor in the establishment of the
massive computer game industry, driving computer
hardware innovation, extending the visual capabilities of
film with ‘special effects” and providing for a new genre
of computer animated films. Audio modeling has
received far less attention. Tools do not exist yet that put
sophisticated modeling capabilities in to the hands of
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sound designers that are equal to the standard tool set of
every graphics designer’s workbench.

The history of twentieth century music is also a story
of an ever greater acceptance and use of all sound
material in classical and popular genres. Synthesizers
and computers are standard tools in music composition
and production, but the full and equal access to arbitrary
sound control is still limited (Wyse, 2003).

Until the issues in sound models design are resolved,
“interactive” audio will remain a technique of clever
patterns of triggering prerecorded audio, and will not
bestow the bandwidth and flexibility benefits to the
applications that they have the potential to offer.

3. Models and Synthesizers

The main properties of a sound model are

a) a specific range of sound the model is capable of
producing,

b) a set of parameters for control,

c) the paths through the range of sounds that
determine what we shall call the behavior of the
model, that are traversed as the parameters
change.

Models consist of components that take on different
significance depending upon the application. Broadly,
they include a synthesizer, a set of parameters for
control, and structure for mapping between control
parameters and synthesis elements. The output is sound
that that can be perceived by humans or analyzed by
computers to produce features that are used to identify,
classify, label and compare sounds (Figure 1).

Models can span a wide range of complexity, power
and identity. There is no clear dividing line between a
sound model and a synthesizer, for example, which is
itself a parameterized sound generating machine.
Synthesizers are built from elements such as oscillators
and filters, and the (often massive number of)
parameters are the same for each and every sound the
synthesizer produces.  The signal processing and
synthesis levels for sound are what color, lines and
polygons are to graphics. A model-level description for
sound is what characters and objects are to graphics.

The design goal of a typical synthesizer construction is
an architecture that enables the widest possible range of
sounds. The design goal for sound modeling is to
construct a narrowly constrained range of sounds with a
distinctive behaviors and identity. A synthesizer exposes
a single (usally large) set of parameters that are used to
control all of its sounds, and generally have a straight
forward effect on a specific signal processing
component of the synthesizer. A sound model has

sound-specific parameters that, due to the mapping and
control structures, might have a complex coordinated
effect across many of the signal processing components
of the synthesizer, or an effect on the control
architecture itself.

O O O O Control
~ N oo /‘ Parameters
Mapping and control
Synth (Hidden)
Parameters
Synthesizer(s)
WM\W\ Audio
Analysis (Perception,
O O O O Features

Figure 1. Conceptual components of a Sound
Model.

The design goal of a typical synthesizer construction is
an architecture that enables the widest possible range of
sounds. The design goal for sound modeling is to
construct a narrowly constrained range of sounds with a
distinctive behaviors and identity. A synthesizer exposes
a single (usally large) set of parameters that are used to
control all of its sounds, and generally have a straight
forward effect on a specific signal processing
component of the synthesizer. A sound model has
sound-specific parameters that, due to the mapping and
control structures, might have a complex coordinated
effect across many of the signal processing components
of the synthesizer, or an effect on the control
architecture itself.

Another important concept in the distinction between a
synthesizer and a sound model is that of an “event”. In
line with traditional musical concepts, we make a
distinction between the source of control signals and
events (an instrument player) from that of the sound
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synthesizer (a musical instrument). A sound model often
includes event pattern generators, frequently initiating
events on a time scale impossible for human gestures to
achieve. Of course, there remains an external user of
sound models that also generates control signals
including events.

The parameter mapping, control architecture, and
event patterning implemented “under the hood” by
potentially complicated and multiple synthesis
algorithms, relationships between low level synthesis
parameters, dynamics, and nonlinearities, give the model
its identifying characteristics. @~ A car engine, for
example, involves multiple sound sources related by
different kinds of mechanical and acoustic couplings
producing a wide variety of noises under fairly simple
realtime parametric control (a gas pedal and engine
“work load”). Despite the internal complexity, we can
hear underlying model “invariants”, for instance that an
engine does not change size, even though a wide range
of sounds are produced over the control parameter
range. Invariant structures defining behavior are unique
to each model, not generic and customizable by a single
set of parameters, and they define morphological
relationships between different sounds. They are also
what will allow models to be associated with semantics
that will discussed later in the paper.

4. Models and Sounds

For any given sound, there are an unlimited number of
algorithms, and thus sound models, that could generate
it. As an example of the many-to-one issue in sound
modeling, consider the frequency modulation (FM)
technique of sound synthesis (Equation 1) which in a
simple case, uses one sinusoidal waveform oscillator
(the “modulator”) to modulate the frequency of a
second (the “carrier”). The technique results in a series
of sine waves at different amplitude levels centered at
the carrier and spaced out in frequency by an interval
corresponding to modulating frequency.

Jm()=AsmQ2rx ft+[Isin(2x f D)) 0

Because the resulting sound is just a sum of sine waves
at different frequencies, the sound could just as well be
modeled by a bank of oscillators, one per sine wave in
the signal.

If generating a single sound were the goal, it wouldn’t
matter which signal model was used. It is because we
want to design behavior under parametric control that
the choice matters and is the reason why there can be no
such thing as a super-synthesizer general purpose box

that can synthesize any sound given the right parameter
settings.

As mentioned above, a sound model is defined not just
by the sounds in its range, but also by how the sounds
change under parametric manipulation. The same range
of sounds can be covered by two entirely different
models because of how the range of sounds is traversed
depending upon the parameter changes.

Consider again the simple FM and additive algorithms.
For any sound the FM algorithm produces under a fixed
set of parameters, there exists a parameter setting for the
additive model that can generate the same sound.
However, each of these two algorithms affords a
different number of parameters which control very
different kinds of behavior — different trajectories
through their range of sounds. An oscillator has two
parameters; a frequency and an amplitude (ignoring
phase for simplicity). The FM algorithm is built of two
oscillators and so is controlled with 4 parameters, while
the additive model has twice as many parameters as
oscillators. As the frequency of the modulator in the FM
algorithm is changed, it affects all of the (perhaps
dozens of significant) resulting sinusoidal components in
the signal. Thus, in order for the additive model to
generate the same signal, many (perhaps dozens) of
parameters must be manipulated in a coordinated
fashion.

Because the additive synthesis model covers a wider
range of sounds than the FM model, then given two
sounds, a “source” and a “target”, each in the range of
both models, the additive model has many more smooth
paths it can take between the source and the target.

5. Modeling as compression

Modeling can also be seen and used as an extreme
form of audio compression (Scheirer, 2001). A stream of
parameters for a model is an encoded version of the
generated audio data, and the model functions as a
decoder.

Standard compression schemes such as those defined
by the standards organization MPEG (Moving Pictures
Expert Group), are universal in the sense that there is
one encoder/decoder pair that is used for any signal.
Generative models on the other hand are designed for
narrow classes of sounds. Standard lossy schemes may
work somewhat better on some classes of signals than on
others, but they are designed to minimize such bias.

Because generative models are not universal
representations, the encoding stage requires a model
identification step in addition to the signal-to-code step.
Furthermore, the constraints on the range and behavior
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of a typical model are such that the technique will
almost certainly be lossy, and the severity of the loss
will be highly signal-dependent. Finally, parameterizing
models to match signals is an open problem, one that
will be discussed in more detail later in the paper.

Despite these drawbacks, models function with
extreme efficacy as data reduction schemes under certain
conditions:

1) When the class of sounds to be coded is known
and constrained (for example, musical “beats” for
popular songs (Wyse, Wang, Zhu 2003)).

2) When models can be used to create the sound
in the first place (for example in animation and
computer games).

6. Semantics and Sound Models

Locating and labeling information in media stores has
become an important aspect of media management
because of the volumes of data that are the result of the
digitization of media production for both professionals
and consumers. In addition to their more obvious uses in
media production, generative sound models have
properties that make them potentially useful in this
semantic analysis task.

To address human-centirc means of identifying and
searching for material, the objective is a semantic
labeling. It is straightforward to extract certain signal
level features from an audio stream such as spectral
basis vectors (Casey 2001), spectral centroid, zero
crossings, pitch, or measurements of noise. Typically,
semantic audio analysis is based on a learned association
between these low-level signal features and labels
provided by a “supervisor”, or based on an association
with data from another media stream such as video.

Of course, semantics aren’t actually “in” the data, but
with prior knowledge of a usage context, and by making
certain assumptions (e.g. skies are grey or blue and
occupy the upper part of a frame) some headway has
been made in associating signal features with semantics
especially in the realm of graphics. The semantics of
non-speech sound, however, tend to be even more
flexible and have a more tenuous relationship to the
world of objects and events than do graphics. Humans
depend more on what an object looks like than how it
sounds to identify and define an object. Many quite
different objects or events can generate the same sound,
but if two objects look the same they are likely to be
considered to be the same. A single object is also usually
capable of generating many different kinds of sounds.

6.1 Generative models for semantic labeling

Since a model represents a class of sounds — the range
that it is capable of generating — so a model can be used
for classification. If a test sound is close in feature space
to a sound that falls within the range of a particular
model, then we can label the test sound with the model.

The technique is related to speech processing with
Hidden Markov Models (HMM). An HMM represents a
sequence of sounds with a set of states, transition
probabilities between states, and a distribution of
outputs for each state, where outputs represent sound
features. A single HMM represents a class of sounds as
a sequence of features that can be generated given a set
of states and their particular statistical parameterization.
Each sound in the class has an associated likelihood of
being generated by the model. With a collection of
models parameterized for different classes (different
spoken words, for example), a target sound is presented
for identification and a likelihood score is computed for
each model. The model that produces the highest
likelihood score for the sound is chosen as the
identifying class.

These models are often termed “generative” because
they are capable of statistically generating a sequence of
features that correspond to a sound. They are not
directly used to synthesize sound because the features
that represent the sound are not generally invertible.

Sound Models can be used in a similar way. A target
sound is compared to sounds that a model can generate,
and the sound model that can “best” approximate the
target sound is used to label the target sound. What
makes sound models particularly useful is that not only
do they have semantic labels as names (footsteps, trains,
etc), but their control parameters are also labeled, and
the parameter values can be used to refine the semantics.
For example, a footsteps model might have a “Speed”
parameter that takes on values in units of kilometers per
hour. Once the model is identified and parameterized to
best fit the sound, semantics can be “read off” the model
as, for example, “footsteps on gravel at 2 kilometers per
hour”.

Sound models also have the potential to make the
semantic relationship between two different sounds
explicit. If two different sounds are identified with the
same model, but with different parameterizations, then it
would be possible, for example, to compare two
different segments of footsteps sound and draw
conclusions such as that for one set, the person was
walking faster and on a harder surface.
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6.2 Sonification

Sonification is the use of sound to communicate
information in data. Sound has advantages over visual or
textual representations in ‘“hands and eyes busy”
environments such as driving and surgery. It is also
possible to monitor many more audio signals
simultaneously than it is to monitor multiple visual
signals simultaneously.

This is an interesting area for modeling not only
because of the obvious dependence on real time control
capabilities, but because of the relationship between
sound and semantics (Hermann, T. and Ritter, 2004). To
be most effective, the semantics associated with a sound
should be matched to the semantics of the signal being
monitored.

7. Sound Models in Content Creation

Programming sounds is hard. Just finding the right
parameters to achieve a desired sound given a model
architecture is a difficult process, even for experts. Take
for example the Yamaha DX-7, the classic 1983 vintage
FM-based synthesizer. Common folklore in the
synthesis community has it that 90% of all Yamaha DX-
7 synthesizers that came in for servicing had their entire
set of presets intact. If there were a way to automatically
program a synthesizer based on a desired sound, it
would vastly increase the material accessible to sound
designers and musicians.

If the synthesis architecture must be designed as well
as parameterized, the problem is far more difficult.
Traditional sound designers create a single static sound
at a time. A sound model is designed to capture not one,
but an entire range of sounds, and furthermore, traverse
the range of sounds according to a specification of
control and behavior.

The design process starts with a specification of the
sounds and the behaviors a model should exhibit under
parameter control (for example, that footsteps should
have a speed control that determines rate and toe-heel
characteristics).

There are several different classes of activates that
interactive sound model designers engage in:

1) Building models from elementary building blocks

a. Analyzing an existing sound for the
specific features one wants to capture for
the model.

b. Ifatarget sound is not available, then an
architecture must be built and
incrementally improved to meet the design
goals.

c. Defining control and parameter mapping
strategies (Wanderly and Battier 2000)
2) Using existing models
a. Finding models in a database that can
generate something close to the desired
sound and parameterizing them.
i. Defining “parameter sets”
ii. Managing the parameter
dimensionality
b. Changing an existing model to meet
similar sound goals
c. Merging existing models to create new
models (that can “morph” between sounds
in the original models, for example)

8. Building models from elementary units

The building blocks for sound models are modular
units typically referred to as “opcodes”. Opcodes
include signal generators and transformers such as
oscillators, filters, distortion transforms, envelope
generators, random number generators, interpolators and
integrators. Units as simple as mathematical operators to
those as complex as other models, can serve as opcodes.
CSound (Boulanger, 2000), a free and popular
programming language from MIT tracing its roots back
to the 1960’s work of Max Mathews at Bell Labs,
contains over 450 opcodes in its library (and it is still
growing). The input/output modularity of opcodes and
the models they are used to construct can be visualized
in a signal flow type diagram such as the one used in the
graphical programming language Max/MSP
(Cycling’74) and shown in Figure 2.

[mod freq| |mod index|

p0._]["Amount of Efict |

Figure 2. Opcodes units are connected to
construct a sound model. This representation
is directly manipulated by sound designers in

the Max/MSP graphical programming language.
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The process of building up sound models from
opcodes is labor intensive, and requires significant
programming and signal processing understanding. The
graphical representation as shown in Figure 2 is a step in
the right direction, but is still directly homologous to
computer code. The support that graphics designers have
for high-level model creation does not yet exist for
audio.

Some attempts have been made to codify the
knowledge that experts use to assemble models (Rolland
and Pachet, 1995). Making model building reliably fast
is the key to enabling most of the other applications
discussed in this paper that depend on a broad collection
of available models.

Often the specification of the sounds that are required
to be in the model range are in the form of actual sound
samples. This provides a good starting point for
automated support of the model building process.
Garcia (2001) for example, uses a genetic algorithm to
discover model structures and parameter regimes that
are capable of imitating a given target sound.

Sounds can be analyzed in a human-in-the-loop
system, and specific features can be extracted and used
in new sound models that may not be anything like the
original sound.

An important class of sound models are physical
models such as waveguides that simulate wave
propagation through physical media (Smith 2002, Essl et
al. 2004), and modal models that capture the resonant
structure of physical objects (Gaver 1993, Doel and Pai,
1998). The models have inherent semantics and intuitive
parameterizations.

8.1 Sound Model Databases for sounds

In a production environment for fixed-media such as
film and television), the end goal is a specific sound, not
a model. A frequently used resource is a database of
recorded sound. Typically, once a sound has been found,
it must still be altered in some way to fit the new
context. No matter how big the database of sounds, the
world of possible sounds is much larger and it would be
rare to find a sound in a database fitting a designer’s
requirements exactly. Instead, a process of editing and
digitally processing the sound typically follows.

For example, a sound designer may have a sample of a
sound and simply needs to extend it in time. If the sound
is textured, or contains events, simple time stretching
would alter the texture. What is needed is a model of the
statistical characteristics of the texture (Lu et al. 2002,
Zhu and Wyse 2004). Sound textures are sounds for
which there exists a window length such that the

statistics of the features measured within the window
stable with different window positions. That is, they are
static at “long enough” time scales. Examples include
crowd sounds, traffic, wind, rain, machines such as air
conditioners, typing, footsteps, sawing, breathing, ocean
waves, motors, and chirping birds. Since all the
temporal structure exists within a determined window
size, if we have a code to represent that structure for that
length of time, the code is valid for any length of time
greater than the texture window size.

This texture example is a kind of analysis and
resynthesis, and shows that models can be more general
than those that generate a class of sounds — they can also
generate a class of behaviors that can be customized for
a certain class of sounds given an example.

Because designers typically search a database for
something close to what they are looking for and then
expect to manipulate the sound to become what they
want, then a database of sound models is a natural fit
because they afford manipulation across a class of
related sounds. The database is effectively providing the
specialized tools necessary for manipulating a specific
class of sounds.

A sound model can be searched in three different
ways:

a) textually, using the description of the model
embedded in its name and parameters,

b) sonically, using examples of sounds that each
model generates

¢) structurally, treating the model structure itself as

the data.
Once a sound model is retrieved, it must be
parameterized to produce a specific sound.
Unfortunately, there are certain types of model

structures that can make this task daunting.

Although it is often assumed that for a given set of
parameters, a model generates a single sound, this is in
practice often not true. A model that incorporates a
physical model of, for example, a string instrument
bowing action may have an input parameter representing
the position of the bow, but internally compute the
derivative of the position parameter to control sound
generation. In that case, it is not the parameter value that
controls the sound, but how the parameter changes in
time.

Another case where a single parameter setting may
map to different sounds is when the system is nonlinear.
Nonlinear systems, can exhibit hysteresis where the
location of a sound feature discontinuity with respect to

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th International Multimedia Modelling Conference (MMM’'05)
1550-5502/05 $20.00 © 2005 IEEE



a parameter change depends on the direction the
parameter is changing.

There may be randomness built in to the model for
many reasons. For example, no two footsteps sound
exactly the same. If the randomness is generated internal
to the model (rather than by randomness in the external
control) then many different sounds can be associated
with a single parameter value.

It is frequently the case that a time evolution for a
sound is built in to a model, not depending upon changes
to external parameters to effect the evolution. Consider
the sound of a piano that dies away slowly, and even
undergoes some timbral evolution although the external
control is exerted only at the initiation of the note.

Even if we assume that there is only one sound
associated with a given parameter set, we still have the
following remaining challenges that cannot be assumed
away without completely undermining the utility of the
solution:

a) the parameter space can be very large,

b) many parameter settings can map to a given
sound,

c) parameters change in time.

Approaches to solving the problem of searching large
parameter spaces for sound synthesis include using
genetic algorithms (Dahlstedt, P. 2001) or learning
associations between sound features and parameters
(Casey 1998).

An approach to solving the problem including time
domain parameter changes is based on the its kinship to
speech processing. The target sound can be broken
down into a series of short time frames over which the
model parameters are assumed to be fixed. Using prior
learning or searching methods, a collection of candidate
models and parameterizations are generated for each
time frame. For each model, a cost function is defined
for transitioning between parameter settings (states) for
successive time frames. Finally, a Viterbi-like algorithm
can be used on the sequence of candidate states to find
the lowest cost path.

8.2 Sound Model Databases

Of course, if a media production is itself interactive,
then a sound model must be obtained for its interactive
capabilities, not just for a particular sound it makes.
Because model construction is still such a laborious
process, finding an existing model that at least comes
close to meeting specifications could be far more
efficient than building one. This is the approach taken by
Funkhouser (2003) for graphics models.

Automated support for the model building process is
an open problem. In graphics, a promising approach for
piecing together parts of models found in a database is
described in Funkhouser (2004). For graphics models,
pieces are generally spatially separate regions that must
then be “glued” together. For audio, it may be that
different models correspond to different temporal
regions of a sound that can then be glued together as is
done in concatenative speech synthesis and audio
mosaicing (Zils A. and Pachet, 2001). This is useful for
creating a sound, but not optimal for creating an
interactive model. In an interactive model, the various
structural components (Figure 2), are all operative at all
times. The assembly of components is a different kind of
challenge than temporal assembly.

Codifying expert knowledge about assembling model
parts can be helpful (Rolland and Patchet, 1995).
Another approach was outlined by Altman and Wyse
(2004) whereby an ontology of opcode elements is used
to combine models structurally to achieve an audio
“morph”.

9. Summary

Interactive media elements are growing in importance
and ubiquity. Sound modeling has not yet received the
same kind of attention given to graphics modeling
though they offer the same advantages stemming from
flexibility and memory or bandwidth efficiency. The
main driver is media productions that are themselves
interactive such as virtual and mixed realities and
computer games, but the benefits extend to other
applications including fixed media production and
media indexing and retrieval.

We described the components and characteristics of
sound models and some of the salient open issues that
need to be addressed for sound models to achieve their
full potential impact.

10. Conclusions

Future work needs to focus on automated support for
building sound models. If professional media developers
on tight time and resource budgets are going to use
models instead of traditional libraries of prerecorded
sounds, then accessing (either building or finding)
models must be as fast as creating or recording sounds.
The time to access is the single outstanding obstacle to
their widespread use, while in terms of flexibility and
bandwidth, models are far superior to sounds.

For models to be useful in semantic analysis and
indexing and retrieval, there must be a critical mass of
models available. For large collections of models to be
available, tools appropriate for the creative skills of
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sound designers (not signal processing engineers and
programmers) will have to be available for them to
become involved in constructing them. For that too,
automated support for model building is the key.
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