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Real-Time Signal Estimation From Modified
Short-Time Fourier Transform Magnitude Spectra

Xinglei Zhu, Gerald T. Beauregard, Member, IEEE, and Lonce L. Wyse

Abstract—An algorithm for estimating signals from short-time
magnitude spectra is introduced offering a significant improve-
ment in quality and efficiency over current methods. The key issue
is how to invert a sequence of overlapping magnitude spectra (a
“spectrogram’’) containing no phase information to generate a
real-valued signal free of audible artifacts. Also important is that
the algorithm performs in real-time, both structurally and com-
putationally. In the context of spectrogram inversion, structurally
real-time means that the audio signal at any given point in time
only depends on transform frames at local or prior points in time.
Computationally, real-time means that the algorithm is efficient
enough to run in less time than the reconstructed audio takes
to play on the available hardware. The spectrogram inversion
algorithm is parameterized to allow tradeoffs between computa-
tional demands and the quality of the signal reconstruction. The
algorithm is applied to audio time-scale and pitch modification
and compared to classical algorithms for these tasks on a variety
of signal types including both monophonic and polyphonic audio
signals such as speech and music.

Index Terms—Magnitude-only reconstruction, real-time sys-
tems, signal estimation, spectrogram inversion, time-scale modifi-
cation (TSM).

I. INTRODUCTION

AGNITUDE spectra and their time sequences in the

form of spectrograms are widely used for time-fre-
quency representations of audio signals such as speech and
music. The magnitude spectrum of a discrete-time signal z:(n)
is typically obtained from the short-time Fourier transform
(STFT), which is defined as

X(mS,w) = Z z(n)w(n —mS)e =" (1

n=—oo

where w is the analysis window, S is the analysis step size,
and m is the index of the frames of the STFT. The complex-
valued STFT is a complete and reversible time-frequency rep-
resentation. The time-domain signal is uniquely determined by
its STFT representation and vice versa. Using the STFT, the
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short-time Fourier transform magnitude (STFTM) spectrum of
xz(n) is

(e}

Z z(n)w(n —mS)e 7" . (2)

n=—0oo

[ X (mS, @)| =

The terms in (2) are the same as in (1). By combining the real
and imaginary part of each spectral frequency component into a
single number, the magnitude spectrum provides a valuable vi-
sualization tool with a strong correspondence to how audio sig-
nals are perceived in terms of frequency content. For example,
formants, sibilants, and stop consonants are clearly visible in the
STFTM of speech signals, and a skilled viewer can sometimes
even identify words.

In many signal processing applications, the STFT phase in-
formation is lost or not applicable, so that it is desirable to
construct the time-domain signal from a STFTM or a modified
STFTM (MSTFTM). An example of the usefulness of time-do-
main signal reconstruction from STFTM is in time—frequency
blind source separation. When the individual sources are sepa-
rated into their STFT power spectra sequences, the STFT phases
of each source are unknown. The original STFT phase of the
mixture is not a good choice for the individual sources, since
typically the original sources are all still audibly present. The
STFTM of each individual source can be considered a modified
STFTM. If it were possible to “invent” phases to convert the
modified STFTM to a time-domain signal without introducing
distracting artifacts, then we could avoid using the mixed-source
phase information. A second example is the time-scale modifi-
cation of audio signals. The STFT phase of the extended signal
is different from the original and needs to be determined in
some way. In this paper, we will present algorithms for time-
scale modification and pitch modification by constructing sig-
nals from the modified STFTM.

Generally, the STFTM is not reversible, since the time-do-
main signal cannot be uniquely determined from its STFTM
only. For example, obviously z(n) and —z(n) have the same
STFTM. For an arbitrary signal, even when a given magnitude
spectrum is calculated from a real signal, there is generally no
way to exactly convert the magnitude spectrum back into the
original time-domain real signal. Furthermore, in some appli-
cations, we have only a modified (or arbitrary) spectrogram,
where the series of overlapping magnitude spectra might not be
a valid representation of any real-valued audio signal at all. In
such cases, we would like to find a real-valued signal whose
spectrogram is as close as possible to the modified or target
spectrogram.
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STFT magnitude spectrum inversion has also been referred
to as “phase retrieval” and “signal reconstruction from STFTs”
in literature spanning the last 20 years or so. The relationship
between the STFT magnitude and phase is studied in [4],
and the role of the specific choice of analysis window in [9]
and [11]. Under certain conditions, such as the minimum and
maximum phase assumption discussed in detail in [4], [7] and
a set of specific conditions developed in [5], a time-domain
signal can be uniquely determined by its STFT magnitude or
STFT phase. The exact recovery requires part of the time-do-
main signal such as half of the samples [3], or some phase
information such as a spatial sample [8] or one bit of phase
information [6]. In practice, the additional information may
not be available. Quite a few iterative algorithms have also
been explored [1]-[3], [5]-[8], [10], [12], [23] to reconstruct
the time-domain signal by minimizing the mean square error
(MSE) between the given STFTM and the STFTM of the
reconstruction. The MSE function is defined as

1

< / [1X (mS, @)| — | X' (mS, @)|]*dew

wWw=—T

(3)

where | X (m.S, w)| is the STFTM of original signal z(n) and
| X’(mS,w)| is the STFTM of the estimation z'(n). Conver-
gence of the iterative process is provable for some of the algo-
rithms [1], [13].

Griffin and Lim [1] proposed an algorithm (hereafter referred
to as the G&L algorithm) iteratively applying a forward and
inverse Fourier transform to converge toward a time-domain
signal with the desired spectrum. The Fourier transform is used
to extract the phase from an estimation of the time-domain
signal. This phase information is then combined with the target
magnitude spectrum and used to compute an inverse Fourier
transform to generate the next estimate of the time-domain
signal. In this paper, we use the term “magnitude spectrum
constrained transform” (or “M-constrained transform”) to refer
to the calculation of the IFFT using the derived phase and
the target magnitude spectrum, and a “transform iteration” or
“iteration” to refer to the forward and (M-constrained) inverse
transform pair. In the G&L algorithm, each transform iteration
is concurrently applied to all frames.

The central contribution of this paper is a real-time method
for constructing a high-quality time-domain signal from an
overlapping series of MSTFTMs, or spectrogram. This paper
is organized as follows. In Section II, requirements for a prac-
tical real-time spectrogram inversion method and the details
of a family of algorithms that address these requirements
are presented. In Section III, experimental results using the
real-time magnitude spectrogram inversion algorithm is shown.
In Section IV, we apply the magnitude spectrogram inversion
method to time-scale modification, and in Section V, to pitch
modification. In Section VI, we draw some conclusions.
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II. REAL-TIME STFTM SPECTROGRAM INVERSION

In many applications, the spectrogram inversion algorithm is
required to execute in real-time. For example, for real-time com-
munications in the presence of noise, spectral subtraction is one
technique used to improve the speech quality and reduce noise.
After the noise reduction process, the spectra must be converted
back into a time-domain signal. Indeed, any streaming audio
signal processing where an output stream is generated while
concurrently reading the input stream requires algorithms ca-
pable of real-time performance since the magnitude spectrum
sequence of the whole signal is clearly not available at the time
the processed output needs to be delivered.

The G&L algorithm uses the following function to update the
estimate in each iteration:

o=} ™

> w(n— mS)% J

xi-i—l(n): m=- w=—7

;io; w?(n —mS)

oo

Xi(mS, w)e I dw

R " @)
where X‘(mS,w) is the STFT of x%(n) with the magnitude
constraint

Xi(m$, =) =X"'<ms7w>%.

&)

Execution speed is an issue with the G&L algorithm because
it requires the computation of a large number of Fourier trans-
forms for each frame in order to achieve high-quality recon-
struction. More fundamentally, the classic G&L algorithm is in-
appropriate for use in real-time applications because it requires
the magnitude spectra from all frames, past and future, to guar-
antee that the spectral error decreases monotonically.

A practical real-time magnitude spectrogram inversion algo-
rithm is expected to fulfill the following requirements.

1) Structural requirement: The algorithm should reconstruct
frames using only temporally local and possibly past in-
formation rather than remote or future time information.

2) Computational load requirement: The amount of computa-
tion required to reconstruct the audio signal should be low
enough to be used in real-time applications across as wide
a variety of platform types as possible.

3) Quality requirement: The reconstruction should be accu-
rate if a target signal is known, and free of distracting arti-
facts. This is a perceptual requirement even when the mag-
nitude spectra have been modified or not created from a
time-domain signal that can be used as a “ground truth”
from which to derive an objective error measure.

4) Flexibility requirement: The inversion algorithm should re-
construct better quality signals with more computational
resources. This property is not necessary, but important for
usability. With this property, the same magnitude spectro-
gram inversion algorithm could be used in situations with
a variety of real-time versus quality demands.

In this section, we introduce several real-time spectrogram
inversion algorithms which, taken together, fulfill the above
four requirements. They are the real-time iterative spectrogram
inversion (RTISI) algorithm and the RTISI with look-ahead
(RTISI-LA) algorithm with several implementation strategies.
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Fig. 1. Tllustration of the partially reconstructed frames of signal y(n). Before
frame m is estimated, there exists an overlap-added result of the frames m — 1,
m — 2, m — 3 in the range of the frame m window. The solid line shows the
time-domain contour of the previously constructed signal, and the dotted lines
show the overlap-added windows. The shaded part is the range of frame m. S
is the synthesis step size between two adjacent frames.

We will show the details of different approaches and discuss
the advantages and disadvantages of each of them.

A. RTISI Algorithm

To fulfill the structural requirement, the signal should be con-
structed according to the time sequential order (frame-by- frame).
In the classic G&L algorithm, all the frames are updated concur-
rently. To fulfill the computation load requirement, the number
of transform iterations must be kept to a minimum. In the classic
G&L algorithm, the slow convergence over transform iterations
makes it inapplicable to real-time applications. We address both
ofthesereal-timeissues by employing a G&L iteration strategy on
the current frame alone, using information from the audio frames
already reconstructed that overlap with the current frame to con-
struct aninitial current frame phase estimate. Using a better initial
estimate of phases for each frame, the computation process is
sped up significantly. We call this algorithm RTISI [14].

Suppose we already have reconstructed the first m — 1 frames
of the synthesis signal, which we denote as y,,—1(n). Let us
consider the problem of generating frame . The signal frames
already generated at this point are illustrated in Fig. 1. All of the
algorithms use the scaled Hamming window

\/ﬁ(a—i—bws@w%))7 ifl1<n<L

0, otherwise

w(n) =

where S is the step size between adjacent frames, L is the
window length, a = 0.54 and b = —0.46. In our signal recon-
struction system, we typically use L = 4, so that the sum of
the squares of the overlapping scaled Hamming windows is
always 1.

As shown in Fig. 1, before we estimate frame m (for m > 1),
the overlap interval is partially filled by the former frames. Un-
less otherwise specified, we use a fixed 75% synthesis window
overlap (i.e., S = L/4) so that the mth partial frame comes from
the overlap-added results of the estimation of the frames m — 1,
m — 2, m — 3 of y(n), while the fourth quarter of frame m is all
zero. To distinguish the partially filled frame from the fully con-
structed frame m, we notate the former partially filled frame as
Ym—1(n)w(n—mS), where w(n) is the window function. Now,
we estimate frame m and overlap-add it with the partial frame
Ym—1(n)w(n — mS) to generate y,,(n).
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Fig. 2. Frame-by-frame iterative phase estimation process. The dashed square
is the magnitude spectrum constrained transform (“M-constrained transform”),
based on the phase estimate and the given target magnitude spectrum.

To generate an initial estimate for the phases of frame m, we
compute the phase of the partially reconstructed signal using an
analysis window positioned at the partially constructed frame
m. This ensures that even without iterating, the initial phase
estimate for frame m will provide good phase continuity with
the partially-reconstructed signal. The Fourier transform of this
partial frame is calculated with the scaled Hamming window
(6). The resulting phase information is combined with the target
magnitude spectrum for the M-constrained transform step. The
inverse Fourier transform of this new frequency-domain signal
produces a new estimate of frame m. If the target number of
iterations has not been reached, frame m is added to the partial
frame y,, 1 (n)w(n — mS), the window is applied, and then
the Fourier transform of the windowed summation is calculated
to get a new estimate of the phase. We use the update (4) from
the G&L algorithm in the RTISI iterative process, but instead
of updating the estimate of the whole signal z:(n), in each step,
we update the estimate of the current frame only. The frame-by-
frame iterative process of the RTISI algorithm is shown in Fig. 2.

For the first frame of the signal, we do not have a partial frame
to be added to our estimate. Any initial phase can be used as the
initial phase estimation for the first frame. In our experiments,
we simply use a zero initial phase estimate with the target mag-
nitude spectrum and follow the above iterative process to gen-
erate the first frame of y(n).

When the iterative process ends, frame m is combined with
the partial frame v,,,—1(n)w(n — m.S), and the process con-
tinues with successive frames until we reach the end of the
spectrogram.

RTISI fulfills the structural and the computational load re-
quirements for real-time applications. However, the flexibility
requirement is not yet met. The performance in terms of spec-
tral error reaches an asymptote during the iterative process and
does not increase with further iterations. The reason is that when
constructing frame m, only the information from the current and
the previous frames are utilized. The RTISI-LA algorithm was
developed to address the flexibility requirement and further im-
prove the quality.
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Fig. 3. RTISI with look-ahead after committing frame 2. (a) The constructed
signal with an indication of the contour (solid line) and overlapped windows
(dashed line). (b) The frames currently in the frame buffer. There are three kinds
of frames in the buffer: frames committed in the previous process; the newly
committed frame m; and the uncommitted frames. (c) The overlap-add result
of the frames in the buffer. The shaded part is the fully committed signal ready
for output.

B. Look-Ahead Strategy

When generating frame m with RTISI, the initial phases are
estimated from the partial frame, and then the transform iter-
ations are applied on that frame only. The phases of frame m
are then fixed or “committed,” and S new samples are ready
for output. In this process, the future frames are not considered
when choosing the phases for frame . By contrast, in RTISI
with look-ahead, & future frames influence the reconstruction
of frame m. After frame m is generated, it is kept uncommitted
until frame m + k is generated.

In Fig. 3, the commitment of frame m is shown with k = 3.
The shaded portion of Fig. 3(a) shows the position of frame .
We use a frame buffer [shown in Fig. 3(b)] to hold earlier com-
mitted frames that overlap frame m, frame m itself, and k uncom-
mitted “future” frames. We typically use 75% overlap between
the adjacent frames in our system so the number of committed
frames that overlap with frame m is 3. We will show the perfor-
mance comparison of different frame overlaps in Section III-A.
In Fig. 3, the number of look-ahead frames k is 3, but it can be
any nonnegative integer. If the initial phase estimation technique
outlined in the next section is not used, RTISI-LA with k = 0
(no look-ahead frames) is identical to RTISI.

When frame m is initially generated, we leave it uncommitted
in the frame buffer and move forward until we reach frame
m~+k. Then we use the partial frame to estimate the initial phase
for frame m + k and apply the transform iteration to each un-
committed frame in the frame buffer (frames m to m + k) using
the corresponding magnitude spectrum. We overlap-add all the
frames in the frame buffer and obtain an overlap-add result, as
shown in Fig. 3(c). At this point, frame m is still marked as un-
committed. We read in all the uncommitted frames (frame m to
m+ k) using the scaled Hamming window from the overlap-add
result. This is repeated over all uncommitted frames until the de-
sired number of iterations is reached. At this point, frame m is
marked as committed and ready for output since the estimate of
its phases will not undergo any further modification.

Since the frames are overlap-added to create the output signal,
the reconstructed output signal in a given time range is not final-
ized until all frames in that time range have been committed. For
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the case where L = 4.5, four overlapping frames contribute to
each block of S output samples. As shown in Fig. 3(c), when
frame m is marked as committed, the previous three frames
would have already been committed, so a block of S new output
samples is ready for output. Then, we remove frame m — k,
which is committed and ready for output, from the frame buffer
and read in the partial frame m + k + 1 and repeat the above
iterative process for frames m + 1 tom + k + 1.

C. Initial Phase Estimation

Spectrogram inversion can be seen as a mapping from a se-
ries of overlapping magnitude spectra to a time-domain signal in
such a way that minimizes a magnitude spectrum distance func-
tion. There may be no zero-error solution, and even when one
exists, it may not be unique without a priori knowledge or the
specification of additional constraints. In many applications, a
signal spectrogram that closely matches the target would also be
useful. For example, in segregating speech from noise, a “good
sounding” reconstruction is more important than a sample-accu-
rate reconstruction of the original. “Good sounding” in this con-
text would mean intelligible speech free of audible artifacts that
might reduce the performance of a human or machine speech
recognizer. Phase continuity across the frames of a spectrogram
is important for avoiding distracting artifacts that can be present
even when magnitude spectral error is low.

Iterative strategies typically seek a local error minimum in-
stead of a global minimum. The G&L algorithm [1] uses such
a strategy. In G&L the MSE monotonically decreases as the it-
eration number increases. However, since there is generally no
a priori knowledge of the original signal, G&L usually starts
from an all-zero or random phase. The result of such an unin-
formed initial phase estimate is that G&L needs a large number
of iterations to approach a spectral error minimum and generate
a high-quality reconstruction. The RTISI algorithm starts from
a much better initial phase estimation based on the partially re-
constructed frame, and this greatly reduces the number of itera-
tions required to achieve a given error criteria. The better initial
phase estimation means that the iterative process starts from a
position much closer to a local error minimum which can then
be reached more quickly.

D. Asymmetric Analysis Window

In the algorithms presented so far, the initial phase estimate
for frame m is obtained by overlap-adding the previous frames
using the best available phase estimates for those frames to gen-
erate an estimated time-domain signal, applying a Hamming
window to that time-domain signal, applying a Fourier trans-
form to it, and extracting the phases. This approach guarantees
that the initial phase estimate for frame m will have good phase
continuity with previous frames.

When we are estimating the initial phases for frame m, we
already have phase estimates for previous frames, but not for
future frames. Our best estimate of the output signal in the time
range of frame m therefore consists of the overlap-added result
of frames m — 1, m — 2, and m — 3. The envelope of that
signal will naturally be asymmetric, as it does not include the
contribution of future frames m + 1, m + 2, and m + 3 which
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Fig. 4. Analysis windows, shown in dashed line. (a) The asymmetric window
for the latest frame (/n + k) which is to be initialized. (b) Another asymmetric
window for the latest frame (124 k&) which has been initialized. (c) The modified
Hamming window for other uncommitted frames.

also partially cover the time range of frame m. This asymmetry
is illustrated in Fig. 1.

Even if the phase estimates for the previous frames m — 1,
m — 2, and m — 3 were perfect (i.e., exactly matched the phases
in the original signal), the asymmetry of the envelope of those
overlap-added frames means that our initial phase estimate for
frame m would still be inexact. We can partially compensate for
that asymmetry, and hence get a better initial phase estimate,
by using an asymmetric analysis window. For the initial phase
estimate, a good choice of asymmetric analysis window is a
time-reversed version of the aforementioned envelope, as shown
with a dashed line in Fig. 4(a).

Applying the dashed window in Fig. 4(a) produces a sym-
metric signal contour which is used to generate the initial phase
estimate. The total computation load is essentially unaffected
because there are no new iterative steps introduced. After the
first iteration for generating frame m + k, we overlap it with the
signal constructed so far and get a new partial envelope, shown
under the solid line in Fig. 4(b). In the later iterations, we use
the reverse of the new envelope (including the new frame), as
shown in dashed line in Fig. 4(b), as the analysis window of
frame m + k. For other frames in the frame buffer, we use the
modified Hamming window (6) as the analysis window, which
is shown in Fig. 4(c) in the dashed line. We will discuss the
performance improvement using such an asymmetric analysis
window in Section III.

E. Performance of the RTISI-LA Algorithm

The computational load is determined mainly by the total
number of forward and inverse Fourier transforms required per
frame. For a given frame, the number of transforms is 2p(1+k),
or the number of transforms per iteration times p, the number
of iterations per frame, times the number of frames (the cur-
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rent frame plus &, the number of look-ahead frames). The orig-
inal RTISI algorithm as described in [14] achieves good signal
reconstruction quality by ensuring good phase continuity be-
tween each new frame and previous frames. RTISI-LA achieves
better quality by also taking into account information in a small
number of future frames when computing phases for the current
frame.

The cost for the future information is additional delay and a
higher computational load. The delay comes in two forms: com-
putational and structural. If the number of iterations per frame,
p is held constant, then looking ahead one more frame results in
the need to compute p more iterations for every S output sam-
ples. Of course, the impact of the computational delay might
be negligible on some platforms, but on others, such as on mo-
bile devices, there are strict computational limitations. Further-
more, looking ahead also results in additional structural delay.
Frame m is kept uncommitted until frame m + k is initialized.
Thus, looking ahead one more frame means that frame m has
to be kept uncommitted with an additional delay of S samples,
or S/sr seconds, where sr is the sampling rate in hertz. If the
sample rate is 44 100 Hz and the frame length L is 1024 samples,
then each additional look-ahead frame costs (1024/4)/44 100
Hz = 5.8 ms additional delay. In applications with critical
real-time requirements, the delay has to be taken into consider-
ation, and an appropriate number of look-ahead frames should
be chosen to achieve the desired balance between performance
and delay. Fortunately, most of the improvement in quality re-
sults from the first few look-ahead frames in RTISI-LA.

III. EVALUATION

The signal-to-error ratio (SER) function [10] is used in
evaluation

SER
> & [ XS )| dw
=10log— " F=TT
S o [ [IX(mS, @)X (mS, )| dw

(N

Since the magnitude spectrogram | X (m.S, w)]| is given, mini-
mizing the mean square error (3) is equivalent to maximizing
the SER function (7).

Our test sample set consists of 32 audio segments, half of
them are speech signals (monophonic) and the other half are
music signals (polyphonic). Each segment is approximately 15 s
long and the sampling rate is 44 100 Hz, except for some down-
loaded samples whose sampling rate is 22050 Hz. We use a
window length of 23.2 ms in all evaluations, which corresponds
to 512 samples at 22 050 Hz.

In Sections III-A-III-C, we evaluate variants of the RTISI-LA
algorithm. We then choose a specific variant to compare
RTISI-LA with other algorithms in Section III-D.

A. Evaluation of Initial Phase Estimation Methods and Frame
Overlap Rates in RTISI-LA

In this section, we compare the SER results using RTISI-LA
using various settings on a variety of speech and music signals.
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TABLE 1
RTISI-LA PERFORMANCE

Initial phase step size Music
estimation Speech SER (dB) SER
(dB)

Normal windowing L/8 21.68 16.61
L/4 22.72 18.22

With asymmetric L/8 24.96 19.72
analysis window L/4 24.65 19.60

In particular, we present results for the two different methods for
estimating the initial phases, and for varying amounts of overlap
between successive frames.

As discussed in Section III-C, for the initial phase estimation
of each new frame, we use either the partial frame’s phase or the
phase obtained after applying the asymmetric analysis window.
Since we are particularly concerned with the performance at
low computation loads, we fix the number of look-ahead frames
at 3 and the number of iterations per frame at 2 so that the
total number of iterations for any individual frame is 8. The
SER results are shown in Table I. Using an asymmetric anal-
ysis window for RTISI-LA increases performance by approxi-
mately 2 dB for both speech signals and music signals, without
increasing the number of iterations. Further experiments would
be required to determine whether and when this improvement in
measured SER results in any subjective audible improvement in
quality. In the following, when we refer to RTISI-LA, we mean
RTISI-LA with the asymmetric analysis window.

We also compared the performance of RTISI-LA using
varying amounts of overlap between adjacent frames, while
keeping the number of look-ahead frames fixed at 3. With step
sizes S = L/8 and S = L/4, the corresponding amount of
overlap between adjacent frames is 87.5% and 75%, respec-
tively. As shown in Table I, without the asymmetric analysis
window, the performance using S = L/8 is worse than that
of using rate S = L/4. This is not surprising, given that the
number of look-ahead frames is the same in both cases. For the
case where S = L /4, using three look-ahead frames means
that we use information from all future frames that overlap
with the current frame m, and the envelope of the sum of the
frames in the frame buffer is flat in the time range of frame m,
as shown in Fig. 3(a). By contrast, if S = L /8, there are in fact
seven future frames that overlap with the current frame. If the
number of look-ahead frames is only 3, this means that when
frame m is committed, the envelope of the sum of all frames in
the frame buffer is not flat.

When the asymmetric analysis window is applied, using S =
L /8 gives a slight performance improvement compared to S =
L /4. Note that using a smaller step size means more frames for
a given duration, and an increase in the amount of computation.
For example, using an S = L /8 requires twice the computation
as S = L/4, but gives only a slight improvement in SER.

A way to further improve SER performance when using a
smaller step size is to look-ahead by more frames to cover all the
frames overlapped with the current frame. However, this is com-
putationally expensive. Suppose for example, that we choose
the number of look-ahead frames such that all future frames
that overlap with the current frame are taken into considera-
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TABLE II
RTISI-LA WITH DIFFERENT LOOK-AHEAD NUMBERS

Look-ahead frames Speech SER (dB)  Music SER (dB)

0 20.06 15.53
1 22.99 18.13
2 2421 19.11
3 24.65 19.60
4 24.72 19.89
5 24.92 20.04
6 24.97 20.23
7 25.01 20.35
8 25.05 20.50
9 25.12 20.60
10 25.13 20.64
TABLE III

RTISI-LA PERFORMANCE WITH DIFFERENT
NUMBERS OF TRANSFORM ITERATIONS

Total number of

Look-ahead transform Total Speech Music
frames iterations per iterations SER (dB)  SER (dB)
step
3 2 8 24.65 19.60
3 20 80 28.40 23.62
10 20 220 31.00 26.23

tion. When the step size is reduced by half from S = L/4 to
S = L/8, the number of look-ahead frames increases by a factor
of 2 as does the total number of frames for a given signal dura-
tion. As a result, the computation load increases by a factor of
4.

B. Comparing Different Amounts of Look-Ahead

In this section, we evaluate the effect of the number of look-
ahead frames. The step size is fixed at S = L /4, and the number
of iterations per step is set to 2. We then use various look-ahead
frame numbers from 1 to 10. The SER results are shown in
Table II.

From Table II, we can see that the performance increases with
the number of look-ahead frames when the number of iterations
per step is held constant. However, the computational load also
increases with the number of look-ahead frames. Looking ahead
more than three frames means that we use information from
future frames that do not overlap at all with the current frame.
The additional indirect information does not provide much SER
improvement.

C. Flexibility of RTISI-LA

RTISI-LA has several parameters that can be used to choose
the appropriate balance between computation time and re-
construction quality for an application. The primary factors
determining the computation time are the number of iterations
and the number of look-ahead frames. The performance of
RTISI-LA with different computational loads is shown in
Table III.

D. Comparing RTISI-LA, G&L , and RTISI

In this section, we compare the SER performance of
RTISI-LA to that of the G&L and RTISI algorithms. For the
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TABLE 1V
SER EVALUATION OF RTISI-LA3, G&L, AND RTISI

Number of
Algorithm transform Speech Music SER
g iterations per SER (dB) (dB)
frame
8 11.77 10.61
G&L 80 19.99 17.08
8 19.12 14.72
RTISI 80 19.32 14.90
8 24.65 19.60
RTISI-LA 80 28.40 23.62

purposes of this comparison, we use RTISI-LA with three
look-ahead frames with the aforementioned asymmetric anal-
ysis window. We evaluate these algorithms at eight transform
iterations per frame (which easily runs in real-time on a
3-GHz PC), and at 80 iterations per frame representing the
near highest-quality reconstruction performance for these
algorithms. The SER of the reconstruction result is shown in
Table IV.

For both cases, the SER performance of RTISI-LA is sub-
stantially better than either G&L or RTISI, whether for speech
or music. Even when using only eight transform iterations per
frame, RTISI-LA gives better SER than G&L or RTISI using
80 transform iterations per frame. In other words, the measured
SER is better despite a reduction in computation load by a factor
of 10.

Table IV also shows that the original RTISI algorithm per-
forms better than G&L at eight iterations. However, as the
number of iterations is increased, RTISI’s SER quickly reaches
a plateau, whereas G&L’s SER continues to increase, so G&L
eventually outperforms RTISI given a large enough number
of iterations. With RTISI-LA, by contrast, the SER generally
continues to improve as the number of iterations is increased.
Even when the number of iterations is extremely large (e.g.,
1000, as shown in Fig. 5), RTISI-LA still gives better SER
than G&L. A possible explanation for this is that the strictly
monotonic error reduction with iterations in G&L coupled with
poor initial phase estimates might make better error minima
unavailable to the algorithm. The better initial phase estimates
permit RTISI-LA to achieve better reconstruction quality than
G&L and greatly reduces the computation time; however, the
SER does not increase in a strictly monotonic fashion. Fig. 5
shows the SER of the construction result of an orchestral music
signal using G&L, RTISI, and RTISI-LA with look-ahead
number k = 3.

IV. TIME-SCALE MODIFICATION (TSM)

TSM of signals has long been a subject of interest in the
audio and speech processing domains. A key challenge in TSM
is to change the audio rate, while preserving other characteris-
tics such as pitch and timbre. Several approaches have been re-
ported for modifying the time-scale of an audio signal. Such ap-
proaches include the G&L method [1], the synchronized overlap
and add algorithm (SOLA) [15], and its various modifications
such as WSOLA [16], PAOLA [17], PSOLA [18], the phase
vocoder algorithm [19], and some methods for building specific
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Fig. 5. SER of the construction result of an orchestral music signal using G&L,
RTISI, and RTISI-LA (with look-ahead number of 3), respectively. (a) SER
of G&L, RTISI, and RTISI-LA for up to 100 iterations. (b) SER of G&L and
RTISI-LA for 100 to 1000 iterations.

models of speech processes such as the vocal tract model [20]
and a probabilistic inference model [21]. To achieve time-scale
modification for polyphonic signals, the phase vocoder methods
[19], [22] are common choices.

For monophonic signals, a time-domain process of overlap
and add (OLA) is often used as follows. The original signal is
first windowed at length L with an analysis step size S,. Then
for each windowed frame a reconstruction signal of the same
length is generated and all the regenerated signal segments are
overlap-added with appropriate weights for the synthesis step
size Ss. However, a simple time-domain OLA method does not
generally work well because the signal segments being overlap-
added may not be consistent with the audio modification rate
Ss/S,. Different OLA variants modify the basic process to im-
prove quality. For example, in the SOLA method, the recon-
structed frame varies within a small range to maximize a cor-
relation function to improve the consistency of the scaled re-
sult. Pitch synchronous methods can also help when the signal
is monophonic.

Because traditional magnitude-spectra-only reconstruction
methods in [1] and [2] require a large number of iterations of
the analysis-synthesis cycle to achieve good performance, the
time-domain methods have been considered more economical
in computation and have been applied in many commercial
implementations. The time-domain TSM methods work well as
long as the modification factor is close to 1 and when the signal
source is monophonic. The RTISI-LA method works well for
both monophonic samples and polyphonic signals.

The method of applying RTISI-LA to time-scale modification
follows the traditional frequency-domain method. For a modi-
fication rate o, we use an analysis step size S, to obtain the
STFTM and use a synthesis step size Ss such that S, = S;/«.
The frame lengths in the analysis and synthesis process are both
L. Here, we use a fixed synthesis step size S; = L/4, which



1652

TN TN .
, 4 , X original
y; 0N AN signal
Z N
R R ]
spectra
pd time-scale
4 modified signal
/ /

pd pd
ks k L A

Fig. 6. Time-scale modification in RTISI-LA.

keeps computational requirements consistent for various modi-
fication rates. The process is shown in Fig. 6.

The analysis step size S, can be any arbitrary value. If the
analysis step size is positive and less than the synthesis step
size S, the result is time-stretching, i.e., the reconstructed audio
plays back more slowly than the original. If the analysis step size
is larger than the synthesis step size, the result is time-compres-
sion (the reconstructed audio plays back faster than the original).
The analysis step size can also be negative for “reverse” play-
back, or even zero.

Note that if the analysis step size S, exceeds the frame length
L, there is no overlap between adjacent analysis frames, and
the quality of TSM may suffer as a result. This can be avoided
by choosing a smaller synthesis step size S, so that for the
maximum desired « (i.e., greatest degree of speedup), S, never
exceeds L.

In subjective listening tests, the perceptual quality of re-
constructions using RTISI-LA compare favorably with other
methods such as SOLA, even for monophonic signals with
small modification rates where time-domain methods are
at their best. In subjective tests using monophonic signals,
RTSI-LA sounds better, especially as the modification rate
approaches a factor of 2. This is despite (or perhaps because
of) the fact that the first step in the RTISI algorithm is to throw
away the phase information. Readers who would like to do
their own listening tests can find time modification examples
using RTISI-LA at http://www.zwhome.org/~lonce/Publica-
tions/RTISI_LA .html.

V. PITCH MODIFICATION (PM)

PM of audio signals is useful in a number of applications such
as multimedia audio signal processing, speech synthesis, vocal
identity transformation, and creating special sound effects for
applications such as karaoke. A simple extension to the original
RTISI-LA algorithm allows it to be used for pitch modification,
while also providing simultaneous independent control of time-
scale modification.

The key is to generate a “stretched” or “squashed” spectrum
for each frame for upwards or downwards pitch shifts, respec-
tively. Modifying the spectrum directly is problematic, however,
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Fig. 7. Real-time pitch modification process. (a) Frame m in the original
signal. (b) Frame m + 1 in the original signal. (¢) Frame m + 1 in the
reconstructed signal, which is obtained by resampling the original frame m + 1
and synthesizing.

as the bin spacing for typical frame lengths is quite coarse. This
makes precise control of pitch shifts nearly impossible.

To alleviate this problem and allow very precise pitch shifts,
the pitch is shifted by resampling each frame in the time-do-
main, prior to computing the STFTM. If the normal analysis
frame length is L, and the pitch is to be shifted upwards by a
factor of g, then for each frame we use a block of L' = gL sam-
ples, as shown in Fig. 7(b). Resampling is done in the time-do-
main to generate a frame of length L as shown in Fig. 7(c). The
target STFTM is then computed on the resulting frame. Then
the RTISI-LA is run exactly as for the case without pitch mod-
ification. Note that in the reconstruction process the step size S
and frame length L remain constant regardless of the degree of
time-scale or pitch modification. In this way, the computational
load remains essentially constant for any pitch or time-scale
modification factor.

In our current experiments, we use simple linear interpola-
tion, which is computationally inexpensive and provides rea-
sonable sound quality in most cases. Better interpolation al-
gorithms will almost certainly provide some improvement in
sound quality. In particular, when resampling to shift the pitch
upwards, simple linear interpolation will result in aliasing if the
original signal has high-frequency content, and is not low-pass
filtered prior to resampling.

In our experiments, we have found that pitch shifting using
RTISI-LA works well for pitch shift factors from 1/2 to 2, i.e.,
pitch shifts downwards or upwards by as much as one octave.
Examples of pitch modification using RTISI-LA can be found at
http://www.zwhome.org/~lonce/Publications/RTISI_LA html.

VI. CONCLUSION

The RTISI-LA algorithm for constructing real-valued time-
domain signals from a sequence of magnitude spectra was pre-
sented. The method is based on the classic G&L [1] algorithm,
and modified to be structurally and computationally suitable
for real-time applications. The initial phase estimates for each
frame were shown to be the key for fast convergence. Variations
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of the algorithm were developed that allow for a parameterized
tradeoff between computational and performance goals.

Experiments show that with a specific asymmetric analysis
window, RTISI-LA achieves its best reconstruction quality.
Although increasing the number of iterations generally tends
to improve the reconstruction quality, the SER does not in-
crease monotonically, though in practice this does not limit
effectiveness.

The RTISI-LA method at eight transform iterations per
frame generally approaches or exceeds the performance of the
classic G&L algorithm with 80 iterations per frame in terms of
the SER. The reduction in computation and consistently high
quality across a wide variety of signal types makes RTISI-LA
an appropriate choice for many signal processing applications.
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