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Abstract
Style transfer is a technique for combining two images based on the activations and feature statistics in a deep learning

neural network architecture. This paper studies the analogous task in the audio domain and takes a critical look at the

problems that arise when adapting the original vision-based framework to handle spectrogram representations. We con-

clude that CNN architectures with features based on 2D representations and convolutions are better suited for visual images

than for time–frequency representations of audio. Despite the awkward fit, experiments show that the Gram matrix

determined ‘‘style’’ for audio is more closely aligned with timbral signatures without temporal structure, whereas network

layer activity determining audio ‘‘content’’ seems to capture more of the pitch and rhythmic structures. We shed insight on

several reasons for the domain differences with illustrative examples. We motivate the use of several types of one-

dimensional CNNs that generate results that are better aligned with intuitive notions of audio texture than those based on

existing architectures built for images. These ideas also prompt an exploration of audio texture synthesis with architectural

variants for extensions to infinite textures, multi-textures, parametric control of receptive fields and the constant-Q

transform as an alternative frequency scaling for the spectrogram.
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1 Introduction and related work

If articulating the intuitive distinction between style and

content for images is difficult, it is even more so for sound,

in particular non-speech sound. The recent use of neural

network-derived statistics to describe such perceptual

qualities for texture synthesis [14] and style transfer [13]

offers a fresh computational outlook on the subject. This

paper examines several issues with these image-based

techniques when adapting them for the audio domain.

Belonging to a class of problems associated with gen-

erative applications, style transfer as a concept within deep

learning was popularized with the pioneering work of

Gatys et al. [13, 14]. Their core approach leverages the

convolutional neural network (CNN) to extract high-level

feature representations that correspond to certain percep-

tual dimensions of an image. In texture synthesis [14],

image statistics were extracted from a single reference

texture with the objective of generating further examples of

the same texture. In style transfer [13], the goal was to

simultaneously match the textural properties of one image

(as a representation of artistic style), with the visual content

of another, thus allowing the original style to be swapped

with that of another image while still preserving its overall

semantic content. Both tasks are framed as optimization

problems, whereby the statistics of feature maps are used as

measures to formulate a loss function between the refer-

ence images and the newly generated image. Many authors

have extended Gatys’ original approach in terms of speed

[22, 35], quality [27, 36], diversity [37] and control

[11, 15, 16]. For a more thorough review of the historical

developments in image style transfer, we refer the reader to

Jing et al. [21] and the individual papers.
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To build on existing mechanisms that were developed in

the context of the visual domain and carry out the analo-

gous tasks in the audio domain, several exploratory studies

have replaced images (in the sense of photographs/pic-

tures) with a time–frequency representation of an audio

signal in the form of a spectrogram. Two-dimensional (2D)

spectral images have previously been utilized as input

representations for CNNs in a range of audio domain tasks

including speech recognition [8], environmental sound

classification [31] and music information retrieval [9]. In

empirical terms, the pairing of spectrograms with CNNs

has demonstrated consistently superior pattern learning

ability and discriminative power over more traditional

machine learning methods such as the hidden Markov

model (HMM), and lossy representations like Mel-fre-

quency cepstral coefficients (MFCCs) [24].

There have been several preliminary attempts at audio

style transfer with varying experimental focus. Ulyanov

and Lebedev in a blog post [34] outlined several recom-

mendations for audio style transfer including using shal-

low, random networks instead of the deep, pretrained

networks common for the image task. Importantly, while

the spectrogram is a 2D representation, in Ulyanov’s

framework it is still processed as a 1D signal by replacing

the colour channel in the image case with the spectro-

gram’s frequency dimension, therefore convolving only

across the time dimension. Subsequent work in this field

provided a more thorough treatment of the network’s effect

on the derived statistics. Wyse [40] looked at network

pretraining and input initialization, while Grinstein et al.

[18] focused on the impact of different network architec-

tures on style transfer. In the latter study, the deeper net-

works, specifically VGG-19 and SoundNet, were

contrasted with Ulyanov’s shallow-random network and a

handcrafted auditory processing model based upon

McDermott and Simoncelli’s earlier audio texture work

[26]. They concluded that the shallow-random network and

auditory model showed more promising results than the

deeper models. Verma and Smith[39] in contrast to the

others maintained the 2D convolutions and the pretrained

network. They found that small convolution kernels are

effective for signals with steady-state pitches for the ref-

erence style, but provide a limited number of examples

which are only presented visually, making interpretation

difficult. There was also an attempt to isolate prosodic

speech using the style transfer approach by Perez et al.

[28], although only low-level textural properties of the

voice were successfully transferred.

While all the related works studied certain aspects of the

problem, none go into detail on the challenges posed by the

nature of sound and how it is represented, especially in

relation to what is essentially a vision-inspired model in the

CNN. Hence, the focus of this paper is not a presentation of

state-of-the-art audio style transfer, but an analysis of the

issues involved in adopting existing style transfer and

texture synthesis mechanisms for audio. In paintings,

Gatys’ style formulation preserves brush strokes, including,

to a degree, texture, direction and colour information,

leading up to larger spatial scale motifs (such as the swirls

in the sky in Starry Starry Night, see Fig. 1 in [13]) as the

receptive field grows larger deeper in the network. How

these style concepts translate to style in the audio domain is

not straightforward and forms part of the analysis here.

Our main contributions are threefold and relate to the

overall goal of elucidating the possibilities and limitations

of existing vision-focused style transfer techniques when

applied to the audio domain. Firstly, we distil the issues

involved in directly applying CNN-based style transfer to

audio. The problems highlighted serve as a basis for the

improvements suggested here and elsewhere. Secondly, we

provide further insight to possible characterizations of style

and content within a style transfer framework given a

spectrogram input, as well as its connection to audio tex-

ture. Thirdly, we strengthen the link to audio textures by

developing a novel use of descriptive statistics taken from

deep neural networks for audio texture generation.

The rest of the paper is organized as follows: in the first

half, we discuss the theoretical issues that arise when

applying the CNN architecture, largely designed to process

2D images, to the domain of audio. The second half doc-

uments several experiments that further expound the issues

raised in the first half. Here we also show, through an

exploration of the relevant architectures, how the style

transfer framework may in fact align nicely with the con-

ventional description of audio texture.

To further illustrate the concepts introduced, audio

samples are interspersed throughout the paper. They can be

heard, together with additional examples, on the compan-

ion website at the following address: http://animatedsound.

com/research/2018.02_texturecnn/.

2 The style transfer algorithm

Given a reference content image c and a reference style

image s, the aim of style transfer is to synthesize a new

image x matching the ‘‘content’’ of c and the ‘‘style’’ fea-

tures drawn from s. Gatys et al. [13] provided precise

definitions of ‘‘content’’ and ‘‘style’’ for use in the neural

network models that produce images that correlate

remarkably well with our intuitive understanding of these

terms.

Style is defined in terms of a Gram matrix (Eq. 1) used

to compute feature correlations as second-order statistics

for a given input. We start by reshaping the tensor repre-

senting the set of filter responses / extracted in layer n of a
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CNN to (BHnWn, Cn) where B, Hn, Wn and Cn are batch

size, height, width and number of distinct filters, respec-

tively. The Gram matrix is then obtained by taking the

inner product of the ith and jth feature map at each position

k, additionally normalizing by Un ¼ BHnWn.

G ¼ 1

Un

/T/ ¼ 1

Un

X

k

/ik/kj ð1Þ

Given a set of style layers S, the contribution of each

layer n to the style loss function is defined as the squared

Frobenius norm of the difference between the style repre-

sentations of the original style image and the generated

image.

Lstyleðs; xÞ ¼
X

n2S

1

Cn

G /nðsÞð Þ � G /nðxÞð Þk k2
F ð2Þ

In contrast, content features are taken directly from the

filter responses, yielding the corresponding content loss

function between the content representations of the original

content image and the generated image in content layers C.

Lcontentðc; xÞ ¼
X

m2C

1

Cm

/mðcÞ � /mðxÞk k2
2 ð3Þ

The total loss used to drive the updating of the hybrid

image is a linear combination of the style and content loss

functions at the desired layers S and C of the CNN.

Starting from an input image x of random noise (or alter-

natively a clone of the content image c), this objective

function is then minimized by gradually changing x based

on gradient descent with backpropagation through a CNN

with fixed weights to obtain an image of similar textural

properties as s mixed with the high-level visual content of

c. The balance of influence between content and style

representations can be controlled by altering the weighting

hyperparameters a and b, respectively. a can be set to 0 to

completely remove the contribution of content (or other-

wise omit the content operations to save compute time)

resulting in pure texture synthesis (in which case the input

image is initialized with random noise).

In practice, we also introduce an additional regulariza-

tion term in the loss to constrain the optimization of x to

pixel values between 0 and 1. Preliminary experiments

showed that imposing a hard bound through clipping the

spectrogram values resulted in the saturation of many

pixels at 0 or 1, negatively impacting the perceived quality

of the generated sounds despite a similar approach working

reasonably well for images. Instead, the regularization term

penalizes values to the extent that they are outside the

interval (0, 1) and is weighted by c.

U ¼ maxfx� 1; 0g ð4Þ

D ¼ maxf0� x; 0g ð5Þ

where 0 and 1 are matrices of 0s and 1s the same size as x

x ¼ arg min
x

Ltotalðc; s; xÞ

¼ arg min
x

aLcontent þ bLstyle þ ckU þ Dk2

ð6Þ

3 Stylization with spectrograms

3.1 The spectrogram representation

For many classification tasks as well as for style transfer,

images are represented as a 2D array of pixel values with

three channels (red, green and blue) for colour or one

channel for grey scale. Convolutional neural networks have

achieved their well-known level of performance on tasks in

the visual domain based on this input representation. The

traditional 2D-CNN working on visual tasks uses kernels

that span a small number of pixels in both spatial dimen-

sions, and completely across the channel dimension. One

of the defining characteristics of convolutional networks is

that kernels at different spatial locations in each layer share

weights. This architecture drastically reduces the number

of parameters compared to fully connected layers, making

networks more efficient and less prone to overfitting. It also

aligns with the intuition that image objects have transla-

tional invariance, that is, that the appearance of objects

does not change with their spatial location. In this sense,

the CNN architecture is domain dependent.

As a starting point for using existing style transfer

machinery to explore audio style transfer, audio can be

represented as a 2D image through a variety of transfor-

mations of the time domain signal. One such representation

is the spectrogram, which is produced by taking a sequence

of overlapping frames from the raw audio sample stream,

performing a discrete Fourier transform on each and then

taking the magnitude of the complex number in each fre-

quency bin.

Xðn; kÞ ¼
XL�1

m¼0

xðmÞwðn� mÞe�i2pk
N
m ð7Þ

Explicitly, the discrete Fourier transform with a sliding

window function w(n) of length L is applied to overlapping

segments of the signal x as shown in Eq. 7. The overall

process is known as the short-time Fourier transform

(STFT).

The spectrogram consists of a time-ordered sequence of

magnitude vectors, with frequency along the y-axis and

time along the x-axis, an example of which is seen in

Fig. 1. Where colour images have a separate channel for
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each colour, this audio representation has just one for the

magnitudes of each time–frequency location. This audio-

as-image representation can be used directly with the same

architectures that have been developed for image classifi-

cation and style transfer, and has been shown to be useful

for various purposes in several previous studies

[8, 9, 31, 34, 40].

The magnitude spectrogram does not contain phase

information. To invert magnitude spectra, reasonable pha-

ses for each time–frequency point must be estimated, but

there are well-known techniques for doing this that produce

reasonably high-quality audio reconstructions [2, 17].

3.2 Objects, content, and style

What we mean by content and style are necessarily domain

dependent. In the visual domain, content is commonly

associated with the identity of an object. The identity of an

object is invariant to the different appearances it may take.

In the audio domain, psychologists and auditory physiol-

ogists speak of ‘‘auditory objects’’ that are groupings of

information across time and frequency which may or may

not correspond to physical source [3]. The invariance of

such objects across different sonic manifestations is a

central concept in both domains. However, the relationship

between sound and an ‘‘object’’ is more tenuous than it is

for images. Sounds are more closely tied to events, sonic

characteristics are the result of the interaction between

multiple objects and their physical characteristics, and

sounds often carry less information about the identity of

their physical sources than images.

When we consider abstract representations where sense-

making is based on the interplay of relationships between

patterns rather than on references to real-world objects,

then the distinction between content and style becomes

even more fluid. The vast majority of images used in the

literature on style transfer are not abstract, but are of

identifiable worldly objects and scenes. On the other hand,

abstract material, like music, occupies a huge part of our

sonic experience, and this requires a different understand-

ing of content. The question for this paper is, what are the

domain-specific implications for a computational archi-

tecture for separating style and content?

There is a conventional use of the term ‘‘style’’ in music

that, to a first approximation, refers to everything except

the sequence of intervals between the pitches of notes. We

can play a piece of music slow or fast, on a piano or with a

string quartet, without changing the identity of the piece. If

we consider content to be auditory objects corresponding to

time–frequency structures of pitches, then how appropriate

are 2D CNNs and the Gram matrix metric for separating

style from content, and how does the representation of

audio interact with the computational architecture?

‘‘Pitch’’ is a subjective quality we associate with sounds

such as notes played on a musical instrument or spoken

vowels. To a first approximation, pitched sounds have

energy around integer multiples (‘‘harmonics’’) of a fun-

damental. The different components are perceptually

grouped and heard as a single source rather than separately.

The relative amplitude of the harmonics contributes to the

‘‘timbre’’ of the sound that allow us to distinguish between,

for example, different instruments producing the same note

or different vowels sung at the same pitch. For this reason,

we can think of a pitched sound as an auditory ‘‘object’’

that has characteristics including pitch, loudness and tim-

bre. There are fundamental differences between the way

these auditory objects are represented in spectrograms and

the way physical objects are represented in visual images

that, if unaccounted for, may impact the efficacy of spec-

trograms as a viable data representation for CNN-based

tasks.

Objects in images tend to be represented by contiguous

pixels, whereas in the audio domain the energy is in gen-

eral not contiguous in the frequency dimension. CNN

kernels learn patterns within continuous receptive fields

which may therefore be less useful in the audio domain.

Furthermore, in the visual domain, individual image pixels

tend to be associated with one and only one object, and

transparency is rare. In the audio domain, transparency is

the norm and sound emanating from different physical

objects commonly overlap in frequency. The hearing brain

routinely permits energy from one time–frequency location

to multiple objects in a process known as ‘‘duplex per-

ception’’ [30].

One of the implications of the distinctions between the

2D auditory and visual representations for neural network

modelling appears in how we approach data augmentation.

Dilations, shifts, rotations and mirroring operations are

common techniques in the visual domain because we do

not consider the operations to alter the class of the objects.

These operations are clearly domain specific since they can

completely alter how a sound is perceived when performed

Fig. 1 Reference style image s in the form of a spectrogram (left) and

synthesized texture x processed using a 2D-CNN model (right),

matching the style statistics of s. Texture synthesis done with a 2D

convolutional kernel results in visual patterns that are similar to those

for image style transfer but does not make much perceptual sense in

the audio space, as can be heard in the accompanying audio clip. This

study makes several suggestions to better align style transfer to the

audio domain
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in the time and/or frequency domains. Such operations

when done in the Fourier space may inadvertently destroy

the underlying time domain information, with the recov-

ered audio often losing any discernible structure relating to

the original.

Perhaps the most pertinent issue in using spectrograms

in place of images is the inherent asymmetry of the axes.

For a linear-frequency spectrogram, translational invari-

ance for a sound only holds true in the x (time) dimension,

but not in the y (frequency) dimension. Raising the pitch of

a sound shifts not only the fundamental frequency but also

results in changes to the spatial extent of its multiplica-

tively related harmonics. In other words, linearly moving a

section of the frequency spectra along the y-axis would

change not only its pitch but also affect its timbre, thereby

altering the original characteristics of the sound. In con-

trast, shifting a sound in time does not change its percep-

tual identity. Because of the difference between the

semantics of space versus time and frequency, as well as

the asymmetry of the x- and y-axes in the audio represen-

tation, we might expect a 2D kernel with a local receptive

field (like those used in the natural image domain) that

treats both frequency and time in the same way to be

problematic when applied to a spectrogram representation

(see Fig. 1).

To address this problem, an adjustment can be made to

either the way frequency is scaled or the way the model

architecture treats the dimensions. One possibility is to use

a log-frequency scaling such as the Mel-frequency scale or

the constant-Q transform (CQT) that has been empirically

shown by Huzaifah [20] to improve classification perfor-

mance. This is at least suggestive of the influence of input

scaling on the pattern learning ability of the CNN, of which

translational invariance is a central idea. The CQT is of

particular interest as it preserves harmonic structure,

keeping the relative positions of the harmonics the same

even when the fundamental frequency is changed, pre-

serving some degree of invariance in translation. Sounds

that have the same relative harmonic amplitude pattern

would then activate the same set of filters independent of

any shift in the pitch of the sound.

Alternatively, we can alter the architecture typically

used in visual applications. Recent work in the audio

domain has turned to the use of 1D-CNN [34], where we

reorientate the axes: the spectrogram’s frequency compo-

nents are moved into the channel dimension, thereby

treated analogously to colour in visual applications. Of

course, the number of audio channels is thus much greater

than the 3 typically used for colour. The time axis remains

as the width as in the 2D-CNN which is now treated as the

one-dimensional ‘‘spatial’’ input to the network (Fig. 2,

right). As in image applications, the convolution kernel still

spans the entire channel dimension and has a limited extent

of several pixels along the width. We take advantage of this

unequal treatment of the dimensions to allow the CNN to

learn patterns along the full spectrum that are still local in

time. Moreover, by allowing kernel shifts and pooling

operations only over the time dimension, this reorientation

of the axes reinforces the idea of kernels capturing trans-

lational invariance over time but not over frequency.

Equally, one can think of the 1D-CNN arrangement as a 2D

convolutional kernel spanning the entire frequency spec-

trum, valid padding-like, on one edge while shifting the

kernel only across the time axis.

Interestingly, there is also the possibility of transposing

the two dimensions, and instead of frequency, we can treat

time bins as channels. Visually, this operation can be pic-

tured as a 90� rotation of the spectrogram along an axis

perpendicular to its plane in the 1D-CNN in Fig. 2. In this

representation, the width over which the kernel slides is

now occupied by frequency. This arrangement was not

designed to mitigate any issues with the audio

Fig. 2 2D (left) and 1D (right) variations of the three-layer CNN

network that was used in this study. Only convolutional layers are

shown, with the kernels depicted in blue and the numbers representing

the size of each dimension. Note the kernel is shifted only across

width in the 1D case (colour figure online)
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representation and, in fact, undoes the earlier advantages of

the 1D-CNN when it comes to imposing translational

invariance only over time (and not frequency), but we use

it to explore additional possibilities in texture synthesis.

Having the global temporal structure preserved in the

channels also allows us to isolate any effects on the fre-

quencies due to style transfer. This second model was

therefore adopted for a comparison between linear-scaled

STFT and CQT input spectrograms1 that have different

treatments for frequencies but do not alter things

temporally.

4 Concerning the Gram matrix and audio
textures

The empirical observation that deeper levels in the network

hierarchy capture higher-level semantic content motivated

the use of a content loss based directly on these features in

Mahendran and Vedaldi [25] and later Gatys et al. [13].

Visualization experiments to help interpret the learned

weights have shown that individual neurons, and indeed

whole layers, evolve during training to specialize in pick-

ing out edges, colour and other patterns, leading up to more

complex structures.

Similar attempts have been made to interpret spectro-

gram inputs to the network. Choi et al. [4] reconstructed an

audio signal from ‘‘deconvolved’’ [41] spectrograms (ac-

tually a visualization of the network activations in a layer

obtained through strided convolutions and unpooling) by

inverting their magnitude spectra. They found that filters in

their trained networks were responding as onset detectors

and harmonic frequency selectors in the shallow layers that

are analogous to low-level visual features such as vertical

and horizontal edge detectors in image recognition. For the

1D-CNN used in this paper, convolution kernels have

temporal extent, but just as with image processing net-

works, the kernels extend along the entirety of the channel

depth. As a result, the spectral information occupying this

dimension is left mostly intact in feature space. This makes

the derived features more easily interpretable especially in

the shallower layers.

As for style, Gatys observed that it can be interpreted as

a visual texture that is characterized by global homogeneity

and regularity but is variable and random at a more local

level [6]. As first conjectured by Julesz in 1962 [23], low-

order statistics are generally sufficient to parametrically

capture these properties. In Gatys’ formulation of the style

transfer problem, this takes the form of a Gram matrix of

feature representations provided by the network.

In the standard orientation of a 1D-CNN with frequency

bins as channels, the Gram matrix operation transforms a

matrix of features maps indexed by time into a square

matrix of correlations, with each correlation value between

a pair of feature maps, capturing information on features

that tend to be activated together. Further, each entry of the

Gram matrix is the sum total of a feature correlation pair

across all time. This folding in of the time dimension

results in discarding information relating to specific time

bins (just as this metric of style discards global spatial

structure in visual images). We are thus left with a global

summary of the relationship between feature maps

abstracted from any localized point of time. We would

therefore expect the optimization over style statistics to

generally distribute random rearrangements of sonic pat-

terns or events over time. In this case, full-range spectral

features over short (kernel-length) time spans are texture

elements that are statistically distributed through time to

create a texture.

The second variant of the 1D-CNN, referred to in the

preceding section, has time bins as channels. In this ori-

entation, feature maps would largely retain temporal

information while being indexed by frequency. This creates

a different kind of texture model where features localized

in frequency but with long-term temporal features are

statistically distributed across frequency to create a texture.

With this insight, parallels can be drawn to the con-

ventional idea of audio textures which are, correspondent

to their visual namesakes, consistent at some scale—that

scale being some duration in time for the first case and

some range in frequency for the second.

Informally, audio textures are sounds that have

stable characteristics within an adequately large window of

time. Common examples include fire crackling, waves

crashing and birds chirping. There have been a variety of

approaches to modelling audio textures, including those by

Athineos and Ellis [1], Dubnov et al. [10], Hoskinson and

Pai [19] and Schwarz and Schnell [32]. These texture

models are all characterized by the distinction between

processes at different timescales: one with fast changes and

the other static or slowly varying, and provide represen-

tations that can support perceptually similar re-synthesis,

temporal extension and interactive control over audio

characteristics.

Neural networks based on style transfer mechanisms

from the visual [13, 14] and audio [34] domains offer a new

approach to texture modelling. Under this paradigm, tex-

ture corresponds to the style definition, while content is

trivial given the absence of any large-scale temporal

structure. We will explore style transfer architectures fur-

ther for additional insights and propose several extensions

to the canonical system to allow for greater flexibility and a

degree of expressive control over the audio texture output.1 See Sect. 5.3.4 frequency scaling.
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5 Experiments

The rest of the paper documents experiments that probe the

issues discussed previously, and show both the working

aspects and limitations of CNN-based audio style transfer

(Sect. 5.2) and texture synthesis (Sect. 5.3).

5.1 Technical details

To utilize the feature space learned by a pretrained CNN,

many previous studies have used VGG-19 [33] trained on

Imagenet [7]. Learned filters were initially noted by Gatys

to be important to the success of texture generation [14]

and by extension style transfer. However, this assessment

was revised in a more recent work by Ustyuzhaninov et al.

[38] that suggests that random, shallow networks may work

just as well for many case conditions. Network weights

certainly have some influence on the extracted features and

perceptual quality of synthesis as Wyse [40] reported that

audible artefacts were introduced when using an image

trained network (i.e. VGG-19) for the audio style transfer

task. To further probe this effect in the audio domain, we

compare a network with random weights against one

trained on the audio-based ESC-50 data set [29].

For the audio-trained network, ESC-50 audio clips were

preprocessed prior to training as follows: all clips were first

sampled at 22,050 Hz and clipped/padded to a standard

duration of 5 s. Spectrograms were generated via short-

time Fourier transform (STFT), using a window length of

1024 samples (� 46.4 ms) and hopsize of 256 (� 11.6 ms).

STFT magnitudes were normalized through a natural log

function logð½1 þ jmagnitudejÞ and then scaled to (0, 255)

to be saved as 8-bit greyscale png images. The samples

used for style transfer underwent the same processing

without the initial clipping/padding.

For a comparison, a second data set was prepared con-

taining CQT-scaled spectrograms that were converted from

the previous linear-scaled STFT spectrograms using the

algorithm adapted from Ellis [12], which is invertible,

though mildly lossy. Invertibility is required after the style

transfer process to recover audio from the new image using

a variant of the Griffin–Lim algorithm [2, 17].

The network architecture consists of three stacks; within

each stack, a convolutional layer is followed in sequence

by a batch normalization layer, ReLu and max pooling

(Fig. 3). Our initial investigations and prior work by

Ulyanov and Lebedev [34] and Wyse [40] influenced the

design of the CNN in an important way. A very large

channel depth was required to compensate for the reduction

in network parameters for a 1D-CNN, which generally lead

to superior style transfer results. This is corroborated by

Gatys in [14], in which he demonstrated that increasing the

number of parameters led to better quality synthesized

textures. In each of the convolutional layers, we used 4096

channels, much larger than the typical channel depth in

image processing networks. Meanwhile, the number of

channels in the 2D-CNN was heuristically chosen to

roughly match the number of network parameters in the

1D-CNN and hence was much smaller (see Fig. 2). In

addition to the 2D-CNN, two variants of the 1D-CNNs

were used in the experiments: 1D with frequency bins as

channels and 1D with time bins as channels. Unless

otherwise stated, all experiments were done with the 1D-

CNN with frequency bins as channels and a kernel size of

11. Also for all experiments,2 C ¼ relu3 and

S ¼ relu1; relu2. Further information on hyperparameters

from the classification of ESC-50 and style transfer will be

provided in ‘‘Appendix’’. A Pytorch implementation of

audio style transfer as used in our experiments is also

available on Github.3

Fig. 3 Overview of the network layers used in this study

2 When referring to layers, the nomenclature used in this paper is as

follows: relu1 refers to the ReLu layer within the 1st stack conv3

refers to the convolutional layer in the 3rd stack etc.
3 https://github.com/muhdhuz/Audio_NeuralStyle.
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5.2 Audio style transfer

We attempt audio style transfer with the 1D-CNN descri-

bed previously and characterize the output in terms of its

perceptual properties and the CNN architecture. Several

technical aspects that effect the result are also investigated.

5.2.1 Examples of audio style transfer

Several examples of audio style transfer were generated

and can be heard on the companion website. The content

sound (English male speech) was stylized with a variety of

different audio clips including Japanese female speech,

piano (‘‘River flows in you’’), a crowing rooster and a

section of ‘‘Imperial March’’.

Though the style examples came from diverse sources

(speech, music and environmental sound) and so had very

different audio properties, the style transfer algorithm

processed them similarly. ‘‘Content’’ was observed to

mainly preserve sonic objects (pitch), along with their

rhythmic structure. Meanwhile, ‘‘style’’ mostly manifests

itself as timbre signatures without clear temporal structure.

The mix seemed to be most strongly activated at places

where the dynamics of the style and content references

coincided. Furthermore, even though the speech does take

on the timbre of the style reference, content and style

features are not disentangled completely, and the original

voice can still be faintly heard in the background. For a

contrast, we switched to using piano as the content and

speech as the style for synthesis. As before, the interplay

between style and content characterizations can be clearly

heard. As ‘‘style’’, the human voice follows the rhythm of

the piano content, without actually forming coherent

words. The original piano content was, however, more

prominent than in the previous speech examples and so

may sound less convincing as an example of style transfer

to the reader.

While audio style transfer has been shown here to suc-

ceed on a wide variety of sources, it should be noted that

individual tuning was required to obtain a subjectively

‘‘good’’ balance of content and audio features. It is perhaps

the case that style and content references with similar

feature activations would lead to smoother optimization

and a better meshing during style transfer, but this would

limit workable content/style combinations in a way that is

not necessary in visual style transfer.

5.2.2 Varying influence of style and content

The preceding examples were synthesized with careful

tuning of the weighting hyperparameters to obtain per-

ceptually satisfying examples of style transfer. To further

illustrate the effect of mixing different amounts of style and

content features, we progressively varied the ratio of

weighting hyperparameters a and b as shown in Fig. 4. The

content target here was speech, while the style target was a

crowing rooster.

For b=a ¼ 1e5, the original speech can be generally

heard clearly in the presence of some minor distortions and

audio artefacts. From the spectrogram, it becomes clear

that the distortions originate from the faint smearing of the

dominant frequencies in the reference style across time.

The mixing of the dominant frequencies for both the

speech and rooster sounds becomes more apparent when

b=a ¼ 1e7. At this ratio, the original speech can still be

heard albeit with less prominence, while it starts to take on

the timbre of the rooster. Further increasing the influence

of style at b=a ¼ 1e9 results in the output completely

taking on the timbre of the rooster. It is interesting to note

that the rhythm of the speech at this ratio is still retained.

Using the characterization of style as timbre and content

as pitch and rhythm as before, we conclude that the style

transfer at b=a ¼ 1e9 generates the best result among the

examples here, although more fine tuning (as was the case

in the preceding section) would arguably generate better

results.

5.2.3 Network weights and input initialization

Stylized spectrograms were generated with different input

conditions and network weights as shown in Fig. 5. The

synthesized image x was either initialized as random noise

or a clone of the content reference spectrogram c. For

stylization with a trained network, the 1D-CNN was pre-

trained for the classification of the ESC-50 data set for 30

epochs. The content target was speech, while the style

target was ‘‘Imperial March’’ (Fig. 6).

Among the four variations tested, the combination of

random network weights and content initialization brought

about the most stable style transfer. Trained weights gen-

erated much higher content and style losses during the

optimization process as compared to random weights,

regardless of whether the sounds used for style transfer

were previously exposed to the network as part of the ESC-

50 data set. A possible reason for this observation may be

the more powerful discriminative power of a network

pretrained for classification, resulting in a high Frobenius

norm between features derived from different inputs. The

high initial losses with trained weights had a negative

impact on the optimization, leading it to fall into a local

minimum (Fig. 7) and an ensuing noisy-sounding synthesis

from the network (Fig. 5, right). Indeed, a more aggressive

regularization penalty in the form of c had to be used for

the optimization to proceed smoothly. However, the opti-

mization took much longer to converge.
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As expected, initializing with a clone of the content

reference spectrogram resulted in very strong content fea-

tures in the output, with the style features normally less

pronounced (Fig. 5, bottom). In contrast, starting from a

noisy image yielded more mixed results. In Fig. 5 (top

left), the output sounds more like a mix of content and style

rather than stylized content. With pretraining (Fig. 5, top

right), the output sounds heavily distorted on both the

content and style.

Interestingly, with some hyperparameter tuning (a, b
and c), all four variants, at least by visual inspection of the

spectrograms, look to be plausible results of style transfer.

All outputs generally display the style frequencies over-

laying that of the content, while still retaining the onset

markers of the content sound. Nevertheless, not all of them

are of the same sonic quality, and listening to the corre-

sponding audio clips shows a significant difference

between them. Using a random network with content ini-

tialization consistently rendered more integrated style and

content features than the others. The observation that the

expectation of style transfer in images and audio does not

always align may be indicative of a greater sensitivity in

the audio domain to what constitutes ‘‘successful’’ style

transfer in comparison with vision, suggesting that the

Fig. 4 The columns show different relative weightings between style and content given by b=a, with s on the left and c on the right. Samples can

be heard here

Fig. 5 Synthesized hybrid image x with different input and weight

conditions. Clockwise from top left: (1) with random weights and

initialization, the speech is clear with the style timbre sitting slightly

more recessed in the background; (2) it was still fairly problematic to

get good results for trained weights and a random input. Hints of the

associated style and content timbres could be picked up and seem well

integrated but are very noisy. The output also loses any clear long-

term temporal structure; (3) trained weights and input content

generated a sample sound fairly similar to (1) with a greater presence

of noise and artefacts; (4) random weights plus input content seem to

result in the most integrated features of both style and content

Fig. 6 Reference content image c (left) and reference style image

s (right). Listen to them here
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manifold of such examples exists in a narrower range of

data space than for visual data.

Overall, our results show that trained weights are not

essential for successful style transfer, and the particular

combination of hyperparameters had a greater impact on

the output, therefore validating Gatys’ revised conclusion

in [38]. On the other hand, random weights seemed to be

more tolerant to changes in the hyperparameters as a wider

range and more combinations of hyperparameters led to

successful style transfer. Samples generated from random

weights were also generally found to be cleaner in com-

parison with trained weights that slightly coloured the

output with audio artefacts that do not appear to be from

the reference style or content. This final result is in

accordance with Ulyanov [34] and Grinstein et al. [18] who

observed that random networks worked at least as well or

better than pretrained networks for audio style transfer,

suggesting that this behaviour may be even more pro-

nounced for the audio domain.

5.3 Audio texture synthesis

The previous sections demonstrate how a degree of style

transfer is possible with the CNN-based framework

although limitations exist in obtaining expressions of audio

content and style as lucid as those seen in image work.

However, if we leave the task of disentangling and

recombining the divergent aspects of content and style

behind, and consider only a single perceptual factor (i.e.

style as texture), we find that the Gram matrix description

of audio texture is a fairly representative summary statistic

when applied to either one of frequency or time. In this

section, several aspects of audio texture synthesis by the

style transfer schema are discussed further.

5.3.1 Infinite textures

Important to the versatility of the technique for texture

synthesis is the possibility of continuous generation, i.e.

infinite synthesis. This is achieved by appreciating the fact

that the entries of the Gram matrix divided by Un (Eq. 1)

represent a mean value in time for the normally oriented

spectrogram images (the aforementioned abstraction from

time). The time axis given by the width of the spectrogram

can therefore be arbitrarily extended while still keeping the

number of terms in Gð/nðsÞÞ and Gð/nðxÞÞ consistent.

Consequently, the generated image x need not match the

width of the reference style image s. This implies that

audio textures can be synthesized ad infinitum (or con-

versely shortened).

Several samples were synthesized up to three times the

original input duration to demonstrate this effect. The same

style statistics hold for the full duration of x, so textural

elements are uniquely distributed throughout the specified

output length and are not merely repeats of the original

duration.

5.3.2 Multi-texture synthesis

Textures from multiple sources can be blended together by

utilizing the batch dimension of the input, a different

mechanism from what has been proposed for multi-style

transfer in the literature so far. Previous approaches have

included using an aggregated style loss function with

contributions from multiple networks trained on distinctive

styles [5], or combining two styles of distinct spatial

structure (e.g. course and fine brushstrokes) by treating one

as an input image and the other as the reference style [16]

afterwards using the new blended output as the reference

style for subsequent style transfer. Dumoulin et al. [11]

introduced a ‘‘conditional instance normalization’’ network

layer that can not only learn multiple styles but also

Fig. 7 Losses from the optimization process comparing the difference

between random weights depicted as solid lines and trained weights

depicted as dashed lines. Tuning the hyperparameters leads to

generally better convergence for both random and trained weights,

and more integrated style and content features. Despite this, losses

were still very large for trained weights resulting in a much slower

convergence
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interpolate between styles by tuning certain

hyperparameters.

A single style image s is represented by a four-dimen-

sional tensor (B, C, H, W), or (1, 513, 1, 431) substituting

the actual numerical values used in our experiments for a

1D-CNN. In our approach to texture mixing, a set of R
style images is fed into the network as ðR; 513; 1; 431Þ.
Convolution is done separately on each batch member in

the forward pass, resulting in distinct feature maps for each

style. Next the batch dimension is flattened and concate-

nated into the first dimension as part of reshaping / to

(BHW, C) prior to calculating the Gram matrix. As a result,

derivative style features are correlated not only within a

style image but across multiple styles, producing a con-

vincing amalgamation of textures from several sources. In

this way, more complex environmental sounds can be built

up from its components, although we observe that using

sources that are similar to each other creates a more cogent

overall texture. To demonstrate this, a multi-texture output

was generated from a combination of three distinct bird

chirping sounds of 5 s each taken from the ESC-50 data set

(Fig. 8). The synthesized output was extended to a length

of 20 s using the technique outlined in Sect. 5.3.1. As per

the description for texture, chirps from all three clips do not

merely appear periodically but occur randomly and even

overlap at times throughout the output. For a better intu-

ition of the meshing of multi-textures, we also generated a

clip made up of three very contrasting sounds from speech,

piano and a crowing rooster (Fig. 9). For this example,

there is usually one dominant texture (drawn from just one

of the original images) at any given time. It is likely that in

this case very few correlations in the Gram matrix are

found between sounds from the different sources, leading

to the lack of hybrid combinations, but the example still

provides insight into the timescales and process of

reconstruction.

The technique is not without its drawbacks. Since we

use the entirety of the reference textures, unwanted

‘‘background’’ sounds from the sources also appear in the

reconstructed output, such as the low rumbling noise from

one of the chirp sounds that is intermittently heard in the

multi-texture bird sound example. The naive remedy to this

is to essentially make sure the entirety of the reference clip

is desirable, although more fine-tune control of certain

aspects of the feature space similar to those currently being

developed in image style transfer constitutes future work.

5.3.3 Controlling time and frequency ranges of textural
elements

The range in time or frequency captured by each textural

element can be altered by varying the kernel width

hyperparameter in the 1D-CNN, which in turn changes the

effective receptive field of neural units in the CNN. This

offers us a simple parametric measure to change the desired

output.

The effect is most obvious for a 1D-CNN with fre-

quency as channels, in which we control the duration of

individual textural elements through the width of the ker-

nel. Several clips derived from speech were synthesized

with kernel widths ranging from 1, 11 to 101 bins (Fig. 10).

The shortest width of 1 only picks up parts of single words,

reminiscent of phonemes, and produces babble. As we

lengthen the time window, whole words and eventually

phrases are captured. Further examples of the increased

Fig. 8 The extended multi-texture bird sound sample that was

synthesized (bottom) from its three constituent clips (top). Prominent

spectral structures from the component sounds can be seen in the

output spectrogram although there are overlaps with other frequencies

Fig. 9 The multi-texture output (bottom) from three distinct sounds

(top) that may be described as uncharacteristic for textures since they

are fairly dynamic in the long term. In contrast to Fig. 5a, the

synthesis is not as integrated largely because the constituent sounds

have very different spectral properties, resulting in stark transitions

between them
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temporal receptive field can be found in the piano samples.

The piano attack is also audibly not as crisp as the original

clip due to a degree of temporal blur induced by convo-

lution and pooling.

In the alternative orientation with time bins as channels,

the kernel width has control over the range in frequency.

Using a short width (bin width = 1), local frequency pat-

terns are captured and translated to the entire spectrum,

resulting in a sharp, high-pitched version of the original

voice, as one would get with sounds containing many extra

high-frequency harmonics. Nevertheless, the onset of each

word is evident enough to conclude that long term time

structure is preserved. Using progressively longer kernels

(bin width = 11, 101) leads to the output voice becoming

closer and closer to its original form as illustrated in

Fig. 11 (left). This same trend appears for the piano sam-

ples, where the translated high-frequency harmonics results

in the piano timbre taking on a bell-like quality (bin width

= 1, 11) that gets closer to the original with a longer kernel

(bin width = 101).

5.3.4 Frequency scaling

The linearly scaled STFT spectrograms in the previous

experiment were replaced with CQT spectrograms while

keeping the kernel width variation to the same 1, 11 and

101 bins for speech (Fig. 11, right) and for piano. Specif-

ically, we want to test the hypothesis discussed above that

the CQT is better suited for translational invariance in the

audio frequency dimension. Unlike linear scaling, the CQT

preserves harmonic structure as pitch shifts. Conversely,

any shift along the frequency dimension in a CQT spec-

trogram image only affects the pitch and leaves the timbre

or, more precisely, the relative amplitudes of harmonically

related components intact. For this experiment, the 1D-

CNN with time bins as channels was used since it preserves

temporal structure, thus isolating any effects due to the

shifting shared-weight kernels to just the frequencies,

allowing for a clearer analysis.

Similar to the linear spectrograms, extending the kernels

resulted in the capture of a bigger portion of the spectrum.

The two transformations, however, modified the sounds in

distinct ways. One reason is simply that the CQT samples

lower frequencies more densely than the linear scaling and

higher frequencies less densely.

Learning localized frequency patterns over the linear-

STFT resulted in a single synthesized voice that sounded as

if it contained many additional harmonics. In contrast, the

CQT generated something that seemingly contained mul-

tiple voices at different pitches. An explanation of this

phenomenon may lie in the different effect each transfor-

mation has on harmonic relationships and how we perceive

these relationships. Within the kernel’s receptive field, the

CQT maintains harmonic structure, and thus, sounds are

Fig. 10 The corresponding spectrogram outputs for an increasing

kernel width over time bins and the style reference on the left. The

effect of the varying kernel width is apparent from the spectrograms

as bigger slices of the original signal are captured in time with a larger

receptive field. Samples are found here

Fig. 11 Synthesized textures generated from linearly scaled STFT

spectrograms (left column) and CQT spectrograms (right column).

The style references are shown at the bottom. Gradually lengthening

the kernel width (1 , 11, 101 bins) in the reoriented 1D-CNN results in

capturing more of the frequency spectrum within the kernel for both

the linear-STFT and CQT spectrograms, although there are subtle

differences in the corresponding audio reconstructions
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perceptually grouped to sound as part of the same source.

Multiple instances of these harmonic groups appear in the

synthesis leading to the presence of multiple layered voi-

ces. Meanwhile, the linear translation does not preserve the

multiplicative relationship between the components and

thus the harmonic relationship of the sound breaks. As a

result, voices and instruments are heard as a plethora of

different individual localized frequency sources rather than

as a smaller number of rich timbral sources. In that sense,

the CQT achieves translational invariance to a certain

degree within the receptive field of the convolution kernel,

although timbre as a whole is not preserved because only

parts of the full spectrum are being translated. We note,

however, that the Gram matrix represents correlations

across filters at the same location. In the case of the rotated

spectrogram orientation, these are temporally extended

filters located at the same local frequency region. The

distributed nature of pitched sound objects that have energy

at multiples of a fundamental frequency means that the

Gram matrix ‘‘style’’ measure is less sensitive to patterns in

audio representations than to patterns in visual images,

irrespective of the frequency scaling.

6 Discussion

In this paper, we took a critical look at some of the prob-

lems with the canonical style transfer mechanism, which

relies on image statistics extracted by a CNN, when

adapting it for style transfer in the audio domain. Some key

issues that were raised include the asymmetry of the time

and frequency dimensions in a spectrogram representation,

the nonlinearity and lack of translational invariance of the

frequency spectrum, and the loose definitions of style and

content in audio. This served as motivation to explore how

style transfer may work for audio, leading to the imple-

mentation of several tweaks based around the use of a 1D-

CNN similar to the one introduced by Ulyanov and

Lebedev [34].

While changes were made to the model architecture and

input representations to better align the method with our

perceptual understanding of audio, we retained the core

idea of using descriptive statistics derived from CNN fea-

ture representations to embody notions of content and style.

Moreover, how content is distinguished from style—direct

feature activations versus feature correlations via the Gram

matrix (or equivalently first- and second-order treatment of

network features)—was similarly adopted unchanged. A

major goal was to therefore relate what these metrics mean

in terms of audio, and whether they agree with some of our

preconceived sentiments of what these concepts represent.

For audio, everyday notions of ‘‘style’’ and ‘‘content’’

are even harder to articulate than for images. In addition to

the technical issues examined experimentally, they tend to

be dependent on context and level of abstraction. For

example, in music, at a very high level of abstraction, style

may be a term for genre and content may refer to the lyrics.

At a lower level, style can refer to instrumentational tim-

bres and content to the actual notes and rhythm. On the

other hand, in speech, style may relate to aspects of pro-

sody such as intonation, accent, timing patterns or emotion

while content relates to the phonemes building up to the

words being spoken.

Gatys et al. [13] found that first- and second-order

treatment of network features relate remarkably well with

what we visually perceive as content and style. In a few

words, ‘‘style’’ is described as a multi-scale, spatially

invariant product of intra-patch statistics that emerges as a

texture, and ‘‘content’’ is the high-level structure, encom-

passing its semantics and global arrangement. In the audio

realm, we have shown through various examples that this

spatial structure makes the most perceptual sense when

extended to the dimensions of frequency or time separately.

Perceptually, we found that with the style transfer

architecture ‘‘content’’ strongly captures the global rhyth-

mic structure and pitch, while ‘‘style’’ characterizes more

of the timbral characteristics. Style transfer for audio in this

context can hence be construed as a kind of timbre transfer.

As a whole however, there is less obvious disentanglement

between style and content in comparison with image style

transfer, and when their features are combined, they are not

as seamless. Consequently, results heard in the audio clips

are generally less satisfying and aesthetically appealing

than those produced in the image domain.

Despite this, an analysis of the Gram matrix of feature

correlations reveals that this particular aspect of the style

transfer formulation bears many similarities to the concept

of audio textures. Generating new textures of the same type

as the reference in this paradigm is a case of rearranging, at

a certain scale (largely dictated by the kernel width), either

the feature maps of the frequency spectrum or that of

temporal information, while leaving the other dimension

relatively intact. These ideas were demonstrated with

numerous synthesized examples of audio texture, including

ones of multi-source textures and the constant-Q repre-

sentation of audio.

It is evident that the approach borrowed from the vision

domain is far from a complete solution when it comes to

imposing a given style on a section of audio, even if we

narrow the scope of ‘‘style’’ to timbre. Our intuitions about

audio style and content are not well captured by the CNN/

Gram matrix computational architecture and how it works

with time–frequency representations of audio. Further-

more, the finding that random networks were better than

trained networks at the audio style transfer task even puts

to question the central role of feature representation in a

Neural Computing and Applications (2020) 32:1051–1065 1063

123



CNN-based style transfer framework. Future work needs to

instead develop a better understanding of what constitutes

‘‘style’’ and ‘‘content’’ in audio. That insight can then be

used to further investigate audio representations and model

architectures that are a better fit and more specifically

suited for audio generative tasks than the visual domain-

specific CNN style transfer networks.
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Appendix

All models implemented in Pytorch.

Model parameters:

– Max pooling: 1 9 2, stride 1 9 2 (1D-CNN)/2 9 2,

stride 2 9 2 (2D-CNN).

– Padding: ‘‘Same’’ padding used on all convolutional

layers.

– Batchnorm: Default Pytorch parameters used on all

batch normalization layers.

Classification hyperparameters:

– Data set: ESC-50 (fold 1 used for validation, fold 2–5

used for training).

– Optimizer: Adam (lr = 1e-3, b1 = 0.9, b2 = 0.999, eps =

1e-8).

– Loss criterion: Cross Entropy Loss.

– Batch size: 20.

– Training epochs: 30.

Style transfer hyperparameters:

– Optimizer: L-BFGS (with default Pytorch parameters).

– No. of iterations: 500.

Section 5.2.2:

– Random network/content input: a = 1, b = 1e5/1e7/1e9,

c = 1e-3.

Section 5.2.3:

– Pretrained network/random input: a = 1, b = 1e3, c = 1.

– Random network/random input: a = 1e1, b = 1e7, c =

1e-3.

– Pretrained network/content input: a = 1, b = 1e5, c =

1e1.

– Random network/content input: a = 1, b = 1e8, c = 1e-

3.

Section 5.3:

– Random network/random input: a = 0, b = 1e9, c = 1e-

3.

References

1. Athineos M, Ellis D (2003) Sound texture modelling with linear

prediction in both time and frequency domains. In: 2003 IEEE

international conference on acoustics, speech, and signal pro-

cessing (ICASSP), vol 5. IEEE, pp V–648

2. Beauregard GT, Harish M, Wyse L (2015) Single pass spectro-

gram inversion. In: 2015 IEEE international conference on digital

signal processing (DSP). IEEE, pp 427–431

3. Bizley JK, Cohen YE (2013) The what, where and how of

auditory-object perception. Nat Rev Neurosci 14(10):693

4. Choi K, Fazekas G, Sandler M (2016) Explaining deep convo-

lutional neural networks on music classification. arXiv preprint

arXiv:160702444

5. Cui B, Qi C, Wang A (2017) Multi-style transfer: generalizing

fast style transfer to several genres

6. Davies ER (2008) Handbook of texture analysis. Imperial Col-

lege Press, London, UK, chap introduction to texture analysis,

pp 1–31

7. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima-

genet: a large-scale hierarchical image database. In: Computer

vision and pattern recognition, 2009. IEEE, pp 248–255

8. Deng L, Abdel-Hamid O, Yu D (2013) A deep convolutional

neural network using heterogeneous pooling for trading acoustic

invariance with phonetic confusion. In: 2013 IEEE international

conference on acoustics. Speech and signal processing (ICASSP).

IEEE, pp 6669–6673

9. Dieleman S, Schrauwen B (2014) End-to-end learning for music

audio. In: 2014 IEEE international conference on acoustics.

Speech and signal processing (ICASSP). IEEE, pp 6964–6968

10. Dubnov S, Bar-Joseph Z, El-Yaniv R, Lischinski D, Werman M

(2002) Synthesizing sound textures through wavelet tree learning.

IEEE Comput Graph Appl 4:38–48

11. Dumoulin V, Shlens J, Kudlur M (2017) A learned representation

for artistic style. In: Proceedings of ICLR

12. Ellis D (2013) Spectrograms: constant-q (log-frequency) and

conventional (linear). http://www.ee.columbia.edu/ln/rosa/

matlab/sgram/

13. Gatys LA, Ecker AS, Bethge M (2015a) A neural algorithm of

artistic style. arXiv preprint arXiv:150806576

14. Gatys LA, Ecker AS, Bethge M (2015b) Texture synthesis using

convolutional neural networks. In: Advances in neural informa-

tion processing systems, pp 262–270

15. Gatys LA, Bethge M, Hertzmann A, Shechtman E (2016) Pre-

serving color in neural artistic style transfer. arXiv preprint arXiv:

160605897

16. Gatys LA, Ecker AS, Bethge M, Hertzmann A, Shechtman E

(2017) Controlling perceptual factors in neural style transfer. In:

2017 IEEE conference on computer vision and pattern recogni-

tion (CVPR)

17. Griffin D, Lim J (1984) Signal estimation from modified short-

time Fourier transform. IEEE Trans Acoust 32(2):236–243

18. Grinstein E, Duong N, Ozerov A, Perez P (2017) Audio style

transfer. arXiv preprint arXiv:171011385

19. Hoskinson R, Pai D (2001) Manipulation and resynthesis with

natural grains. In: Proceedings of the 2001 international computer

music conference, ICMC

20. Huzaifah bin Md Shahrin M (2017) Comparison of time-frequency

representations for environmental sound classification using con-

volutional neural networks. arXiv preprint arXiv:170607156

21. Jing Y, Yang Y, Feng Z, Ye J, Song M (2017) Neural style

transfer: a review. arXiv preprint arXiv:170504058

22. Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-

time style transfer and super-resolution. In: European conference

on computer vision. Springer, pp 694–711

1064 Neural Computing and Applications (2020) 32:1051–1065

123

http://arxiv.org/abs/160702444
http://www.ee.columbia.edu/ln/rosa/matlab/sgram/
http://www.ee.columbia.edu/ln/rosa/matlab/sgram/
http://arxiv.org/abs/150806576
http://arxiv.org/abs/160605897
http://arxiv.org/abs/160605897
http://arxiv.org/abs/171011385
http://arxiv.org/abs/170607156
http://arxiv.org/abs/170504058


23. Julesz B (1962) Visual pattern discrimination. IRE Trans Inf

Theory 8(2):84–92

24. Ling ZH, Kang SY, Zen H, Senior A, Schuster M, Qian XJ, Meng

HM, Deng L (2015) Deep learning for acoustic modeling in

parametric speech generation: a systematic review of existing

techniques and future trends. IEEE Signal Process Mag

32(3):35–52

25. Mahendran A, Vedaldi A (2015) Understanding deep image

representations by inverting them. In: 2015 IEEE conference on

computer vision and pattern recognition (CVPR), pp 5188–5196

26. McDermott JH, Simoncelli EP (2011) Sound texture perception

via statistics of the auditory periphery: evidence from sound

synthesis. Neuron 71(5):926–940

27. Novak R, Nikulin Y (2016) Improving the neural algorithm of

artistic style. arXiv preprint arXiv:160504603

28. Perez A, Proctor C, Jain A (2017) Style transfer for prosodic

speech. Tech. rep., Tech. Rep., Stanford University

29. Piczak KJ (2015) Esc: dataset for environmental sound classifi-

cation. In: Proceedings of the 23rd ACM international conference

on multimedia. ACM, pp 1015–1018

30. Rand TC (1974) Dichotic release from masking for speech.

J Acoust Soc Am 55(3):678–680

31. Salamon J, Bello JP (2017) Deep convolutional neural networks

and data augmentation for environmental sound classification.

IEEE Signal Process Lett 24(3):279–283

32. Schwarz D, Schnell N (2010) Descriptor-based sound texture

sampling. In: Sound and music computing (SMC), pp 510–515

33. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:

14091556

34. Ulyanov D, Lebedev V (2016) Audio texture synthesis and style

transfer. https://dmitryulyanov.github.io/audio-texture-synthesis-

and-style-transfer/

35. Ulyanov D, Lebedev V, Vedaldi A, Lempitsky VS (2016a)

Texture networks: Feed-forward synthesis of textures and styl-

ized images. In: ICML, pp 1349–1357

36. Ulyanov D, Vedaldi A, Lempitsky VS (2016b) Instance nor-

malization: the missing ingredient for fast stylization. arXiv

preprint arXiv:160708022

37. Ulyanov D, Vedaldi A, Lempitsky VS (2017) Improved texture

networks: maximizing quality and diversity in feed-forward

stylization and texture synthesis. In: 2017 IEEE conference on

computer vision and pattern recognition (CVPR), vol 1, p 3

38. Ustyuzhaninov I, Brendel W, Gatys LA, Bethge M (2016) Tex-

ture synthesis using shallow convolutional networks with random

filters. arXiv preprint arXiv:160600021

39. Verma P, Smith JO (2018) Neural style transfer for audio spec-

tograms. arXiv preprint arXiv:180101589

40. Wyse L (2017) Audio spectrogram representations for processing

with convolutional neural networks. In: Proceedings of the first

international workshop on deep learning and music joint with

IJCNN, pp 37–41

41. Zeiler MD, Fergus R (2014) Visualizing and understanding

convolutional networks. In: European conference on computer

vision. Springer, pp 818–833

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:1051–1065 1065

123

http://arxiv.org/abs/160504603
http://arxiv.org/abs/14091556
http://arxiv.org/abs/14091556
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/
http://arxiv.org/abs/160708022
http://arxiv.org/abs/160600021
http://arxiv.org/abs/180101589

	Applying visual domain style transfer and texture synthesis techniques to audio: insights and challenges
	Abstract
	Introduction and related work
	The style transfer algorithm
	Stylization with spectrograms
	The spectrogram representation
	Objects, content, and style

	Concerning the Gram matrix and audio textures
	Experiments
	Technical details
	Audio style transfer
	Examples of audio style transfer
	Varying influence of style and content
	Network weights and input initialization

	Audio texture synthesis
	Infinite textures
	Multi-texture synthesis
	Controlling time and frequency ranges of textural elements
	Frequency scaling


	Discussion
	Acknowledgements
	Appendix
	References




