
Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

 SOUND TEXTURE MODELING AND TIME-FREQUENCY LPC

Xinglei Zhu Lonce Wyse

Institute for Infocomm Research (I2R) Institute for Infocomm Research (I2R)
& National Univ. of Singapore lonce@zwhome.org
xzhu@i2r.a-star.edu.sg

ABSTRACT

This paper presents a method to model and synthesize the textures
of sounds such as fire, footsteps and typewriters using time and
frequency domain linear prediction coding (TFLPC). The common
character of this class of sounds is that they have a background
“din” and a foreground transient sequence. By using LPC filters in
both the time and frequency domain and a statistical representa-
tion of the transient sequence, the perceptual quality of the sound
textures can be largely preserved, and the model used to manipu-
late and extend the sounds.

1. INTRODUCTION

Sound textures are sounds for which there exists a window length
such that the statistics of the features measured within the window
are stable with different window positions. That is, they are static
at “long enough” time scales. Examples include crowd sounds,
traffic, wind, rain, machines such as air conditioners, typing, foot-
steps, sawing, breathing, ocean waves, motors, and chirping birds.
Using this definition, at some window length any signal is a tex-
ture, so the concept is of value only if the texture window is short
enough to provide practical efficiencies for representation. Since
all the temporal structure exists within a determined window size,
if we have a code to represent that structure for that length of time,
the code is valid for any length of time greater than the texture
window size.

A “sound model” is a parameterized algorithm for generating a
class of sounds. Sound models can provide extremely low bit rate
representations, because only model parameters need to be com-
municated over transmission lines. That is, if we have class-
specific decoder/encoder pairs, we can achieve far greater coding
efficiencies than if we only have one pair that is universal [1]. An
example of using a class-specific representation for efficiency is
speech coded as phonemes. The problem is that we do not yet
have a set of models with sufficient coverage of the entire audio
space, and there exist no general methods for coding an arbitrary
sound in terms of a set of models. The process is generally lossy
and the “distortion” is difficult to quantify. However, there are
specific application domains where this kind of model-based co-
dec strategy can be very effective. Wyse, Wang and Zhu [2] de-
scribe a packet loss recovery method for transients in music using
a “beat” model that vastly reduces the amount of necessary redun-
dant data for error recovery. Another example might be sports
broadcasting where a crowd sound model could be used for low
bit-rate encoding of significant portions of the audio channel.

If generative sound models are used in a production environ-
ment, the same representation and communication benefits exist.

Ideally, all audio media could be parametrically represented just as
music is currently with MIDI (musical instrument digital inter-
face) control and musical instrument synthesizers. In addition to
coding efficiency, interactive media such as games or sonic arts
could take advantage of the interactivity that generative models
afford. Sound textures are an important class of sounds for interac-
tive applications, but in a raw or even compressed audio form they
have significant memory and bandwidth demands that restrict their
usage.

If a statistical description of features is valid, (e.g. the density
and distribution of “crackling” events in a fire), the variance in the
instantiations for a given parameter value would be semantically
equivalent, if not perceptually so. That is, one might be able to
perceive the difference between two reconstructed texture win-
dows since the samples have a different event pattern, but if den-
sity is the appropriate description of the event pattern, then the
difference is unimportant. We must thus identify structure within
the texture window that can be represented statistically as well as
structure that must be deterministically maintained.

2. SOUND TEXTURE MODELING

Texture modeling does not generally result in models that cover a
particularly large class of sounds. It is more appropriate for gener-
ating infinite extensions with semantically irrelevant statistical
variation than it is at providing model parameters for interactive
control or for exploring a wider space of sound around a given
example.

In this paper, we focus on synthesizing continuous, perceptu-
ally meaningful audio stream based on single audio example. The
synthesized audio stream is perceptually similar to the input ex-
ample and not just a simple repetition of the audio patterns con-
tained in the input. The synthesized audio stream can be of arbi-
trary length according to the needs.

2.1. Time Scale in Modeling Sound Texture

Generally, different time frames are used for texture analysis. The
texture window length is signal-dependent, but typically on the
order of 1 second. If the window needs to be longer in order to
produce stable statistics when time shifted, then the sound would
be unlikely to be perceived as a static texture. An LPC analysis
frame is typically on the order of 10 or 20 ms. The frequency do-
main LPC (FDLPC) technique, which is an important part of our
system, is called “temporal wave shaping” in its original context
[3], and it specifies the temporal shape of the noise excitation used
for synthesis on a sub-frame scale.

 DAFX-1

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —

04DAFx

345 345

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

Tzanetakis and Cook [4] use both analysis and a texture win-
dow. In recognition that a texture can be composed of spectral
frames with very different characteristics, they compute the means
and variances of the low-level features over a texture window of
one second duration. The low level features include MFCCs, spec-
tral centroid, spectral rolloff (the frequency below which lays 85%
of the spectral “weight”), spectral flux (squared difference be-
tween normalized magnitudes of successive spectral distributions)
and time-domain zero crossing. Dubonov [5] used a wavelet tech-
nique to capture information at many different time scales. St.
Arnaud [6] developed a two-level representation corresponding
roughly to sounds and events, analogous to Warren and Ver-
brugge’s “structural” level [7] describing the object source and the
“transformational” level corresponding to the pattern of events
caused by breaking and bouncing.

2.2. TFLPC Modeling

One of the objectives in model design is to reduce the amount of
data necessary to represent a signal in order to better reveal the
structure of the data. The TFLPC approach achieves a dramatic
data reduction with minimal perceptual loss for a certain class of
textures. Athineos and Ellis [8] used this representation to achieve
excellent parameter reduction with very little perceptual loss using
40 Time Domain LPC (TDLPC) coefficients and 10 Frequency
Domain LPC (FDLPC) coefficients per 512-sample or 23ms frame
of data resulting in a 10x data reduction. In this process, the com-
pression is lossy although perceptual integrity is preserved and the
range of signals for which this method works is restricted. This is
a coding method rather than a synthesis model, although it
achieves excellent data reduction. We cannot, for example, gener-
ate perceptual similar sounds of arbitrary length using this method,
which greatly restricts the applications.

Figure 1: System Framework.

Figure 2: TFLPC Analysis.

To construct a generative model, we want to connect the Time
domain (TD) signal representation to a perceptually meaningful
low-dimensional control. We have hope of doing this because the
signal representation is already very low dimensional. We still
need to “take the signal out of time” by finding the rules that gov-
ern the progression of the frame data vectors.

3. SYSTEM FRAMEWORK

The framework of the system is shown in Figure 1. There are five
basic steps in the framework: frame-based TFLPC analysis, event
detection, background sound separation, TFLPCC clustering in
reflection domain and resynthesis. The first four steps are the
process of modeling the sound texture, and the last step is to syn-
thesize sound of arbitrary length.

3.1. Frame-based TFLPC Analysis

A frame-based time and frequency domain LPC analysis is first
applied to the sound for further event extraction and reflection
domain clustering, as shown in Figure 2. Such an analysis is es-
sentially the same as the method in [8]. Each frame in the signal is
first multiplied by a hamming window. Following the time do-
main linear prediction (TDLP), 40 LPC coefficients and a whit-
ened residue are obtained. Then the TD residue is multiplied by an
inverse window to restore the original shape of the frame. We use
a discrete cosine transform (DCT) to get a spectral representation
of the residue and then apply another linear prediction to this fre-

quency domain signal. This step is called frequency domain linear
prediction (FDLP), which is the dual of TDLP in frequency do-
main. We extract 10 FDLPC coefficients for each frame.

3.2. Event Detection

The detection of events is shown in Figure 3. The gain of time
domain LPC analysis in the frame-based TFLPC indicates the
energy of frames so that it can be used to detect events. The gain
is first compared with a threshold (20% of the average of the gain
over the whole sound sample) to suppress noise and small pulses
in gain. A frame-by-frame relative difference is calculated and the
peak position of the result is recorded as the onset of an event. To
detect the offset of each event, we use the average of the gain
between adjacent event onsets as an adaptive threshold. When the
event gain is less than the adaptive threshold, the event is consid-
ered as over. The length of most events in our collection of fire
sounds vary from 5-7 overlapped frames, or 60-80ms.

The event density over the duration of the entire sound is cal-
culated as a statistical feature of the sound texture and this density
is used in synthesis to control the occurrence of events.

3.3. Background Separation

After we segment out the events, we are left with the background
sound we call ‘din’ containing no events. We concatenate the
individual segments and apply a 10-order time domain LPC filter
to this background sound to model it. The TDLPC coefficients we

 DAFX-2

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —346 346

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

obtain here are used to reconstruct the background sound in the
resynthesis process.

3.4. TFLPC Coefficients Clustering

In this step, we cluster the TDLPC coefficients and FDLPC coef-
ficients to further reduce the data amount. The process is as fol-
lows.

1) We first transform each of the TDLPC coefficient
(TDLPCC) and FDLPC coefficient (FDLPCC) vectors into the
reflection domain. The filters represented by the LPC coefficients
are not generally stable under perturbation [9], so such a transform
is necessary.

2) Then we determine the number of clusters of TDLPCC and
FDLPCC separately. This is an issue of validity in unsupervised
clustering. Here we use the K-means method in clustering and the
criterion function of minimization of ratio of within-cluster scat-
ter-matrix’s norm and total scatter matrix’s norm [10] to determine
the proper cluster number.

The criteria function is defined as:

det()
det()

w

T

SF
S

= (1)

where
2

1 i

c

w i
i x X

S x
= ∈

= −∑∑ m

is the within-cluster scatter matrix,
i

X is the i-th cluster, c is the
total number of clusters,

()i im mean x x X= ∈

is the mean vector of the i cluster, th

()(T

T

x

S x m x m= − −∑)

is the total scatter matrix and m=mean(x) is the mean of all the
vectors. We limit the number of cluster to be in the range from 2
to 20 and then calculate the criterion function F for different can-
didate cluster numbers in this range. Then we calculate the change
rate of F with increase of cluster number c. When the change rate

is very small (less than 1/1000), which means the criteria function
changes slowly, the current number is considered as the optimal
one.

Figure 3: Event Extraction.

3) The center vector and variance of each cluster is calculated
and recorded for resynthesis. Based on the assumption that each
dimension of the LPCC vector is independent, we calculate the
variance of each dimension separately so that we get a variance
vector for each cluster. Instead of the original frame-based
TFLPCC sequence of each event, the cluster index of each se-
quence and the cluster center and variance are recorded. We also
record the time domain LPC gain sequence and the cluster number
sequence of each event for resynthesis. We record these parame-
ters to preserve the original order of frames, which is critical in
our system.

3.5. Resynthesis

In the resynthesis process, we generate the background sound and
event sequence separately and mix them together in the final step.

Given a desired sound length, we use a noise excited 10-order
background TDLPC filter to generate the background sound.

For the foreground sound, the resynthesis process is shown in
Figure 4 and described below.

 Figure 4: Resynthesis.

1) Use the event density, which is the average number of

events per second, as the parameter of a Poisson distribution to
determine the onset position of each event in the resynthesized
sound.

2) Randomly select an event index. According to the TFLPCC
sequence, use the reflection domain TFLPCC cluster centers and
the corresponding variance as the parameters to a Gaussian distri-
bution function in each dimension to generate the reflection do-
main TFLPCC feature vector sequence for the event.

3) Transform the reflection domain coefficients into the LPC
domain.

4) Do the inverse TFLPC. This is just a reverse process of the
TFLPC analysis, as shown in Figure 5. We first get the DCT spec-
trum of the excitation signal and then filter it using the FDLPC

 DAFX-3

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —347 347

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04)

, Naples, Italy, October 5-8, 2004

 DAFX-4

coefficients to get the excitation signal in the time domain. Figure
6 shows the residue and the regenerated excitation in time domain.
FDLPC captures the sub-frame contour shape well. Then we filter
the time domain excitation using the TDLPC filter to get the time
domain frame signal.

5) Repeat step 4 for all the frames inside one event and then
overlap and add to reconstruct the event.

6) Repeat 2-5 until we generate events for all the event posi-
tions.

7) Mix the synthesized events and the background sound to-
gether to get the final result. The result is shown in Figure 7.

4. EVALUATION AND DISCUSSION

Informal listening tests show that the regenerated sound is quite
similar to the sample audio clip. By using frame level contour
extraction and TFLPC analysis, both the spectral and fine tempo-
ral characteristics of the sound are captured. To listen to and com-
pare the original sound with the generated one, see our website
http://www.zwhome.org/~lonce/Publications/da
fx2004.html

The error for each generated transient event comes from two
sources: one is the error between the excitation signal and the
original residue; another is the difference between the generated
LPCC and the original one due to the clustering. It is not easy to
quantitively measure the dissimilarity between the generated
sound and the sample audio principally due to the statistical varia-
tion in the model.

4.1. Properties of reflection domain clustering

In the clustering of the TFLPCC, we use the reflection domain
coefficients instead of LPC domain coefficients. The reflection
domain coefficients have several advantages compared to the LPC
domain coefficients [9]. Some of the advantages are: Figure 5: TFLPC Synthesis

1) the all pole filter is stable under perturbation provided that
the corresponding reflection coefficients all lie between -1 and +1,

2) interpolating between two of reflection coefficients yields a
smooth change in the frequency response.

Figure 8 shows how the frequency response changes when we
scale the reflection domain coefficients. The first plot is the fre-
quency response of a time domain reflection coefficients. The
second plot is the frequency response of the normalization of the
coefficients whose norm is 1. The last plot is the frequency re-
sponse of scale factor 0.01 multiplies the original coefficients. The
figure shows that when the maximum component of reflect coeffi-
cient vector is much smaller than 1, rescaling the coefficient vec-
tor does not change the frequency response of the LPCC much. In
other words, such a change in the frequency response is acceptable

Figure 6: Time domain residue (above) and recovered excitation
signal (below). Here we plot 7 overlapping frames to show the
structure of one event.

Figure 7: Sample sound (above) and regenerated sound (below).

Figure 8: Scale effect of reflection LPC coefficients.

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —348 348

http://www.zwhome.org/~lonce/Publications/dafx2004.html

Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX-04), Naples, Italy, October 5-8, 2004

and our clustering algorithm can be independent of the vector
magnitude.

4.2. Comparison with Other Methods

4.2.1. An HMM Method

In the framework in Section 3, we cluster the reflection domain
TDLPCC and FDLPCC into clusters separately and record the
TDLPCC and FDLPCC cluster index sequences for each event to
preserve the original order of the frames. By such a clustering we
get two “codebooks” of the TDLPCC and FDLPCC separately and
greatly reduce the amount of information in reconstruction. How-
ever preserving the specific cluster number sequence for each
event also restricts the flexibility of modeling. To gain more flexi-
bility, we train a Gaussian Mixture Model to capture the order
pattern.

After we get the reflection domain TDLPCC and FDLPCC
sequence for each event as we do in Section 3, we use these
TDLPCC sequences and FDLPCC sequence of all events to train
two Gaussian mixture HMMs for TDLPC and FDLPC separately.
In resynthesis, we use these two HMMs to generate the reflection
domain TDLPCC sequence and FDLPCC sequence for regener-
ated events. However, result shows that such a system does not
work well. In the Gaussian Mixture HMM, there are several pos-
sible Gaussian distributions for each state. When we generate
coefficient vectors using the HMM, these distributions are chosen
according to some probability. The randomness in the cluster se-
quence has a significant detrimental affect on the perceptual qual-
ity of the regenerated sound.

4.2.2. Comparison with Event-Based Method

As another approach to reduce the amount of data, we implement
a system using TFLPC analysis to entire events instead of over-
lapped frames. First the energy of each frame is calculated and
then we extract events from the energy sequence of the whole
sound as we do to the gain sequence in Section 3.2. Next we apply
TFLPC analysis to individual events instead of frames so that we
have only one TDLPCC vector and one FDLPCC vector for each
event compare with frame-based method’s two vector sequences.
The data amount is further reduced. However, there is a dramatic
quality decrease when the event length is long. The reasons are as
follows:

 1) When the event length increases, the modeling ability of
LPC decreases. We can use a greater filter order, but the quality is
still worse than the short window case,

2) The limited amount of data affects the parameter extraction
for the Gaussian distribution of each cluster. We get only two LPC
vectors for each event instead of two LPC coefficient vector se-
quences, so there is not enough data to estimate the proper Gaus-
sian distribution parameters for each cluster.

Based on these reasons, among the several methods we im-
plemented in our experiment, the frame-based TFLPC analysis
method which is introduced in the system framework section
worked the best.

5. FUTURE WORK

We have demonstrated a method for modeling certain classes of
sound textures. The method involves analysis at different time

scales to preserve perceptually relevant information for synthesis
and resynthesis. Future work will focus on improvement of quality
and generalization of this method to a wider class of sounds.

Currently we use a frame-based TFLPC analysis. If we could
capture the order pattern of the frames inside events, we could
build pattern models to gain more flexibility.

In the current system we assume all the events are of the same
kind and use a single Poisson distribution to simulate the occur-
rence of the events. This assumption may be violated for some
sounds, such as the sound from tennis game containing the play-
ers’ footstep sound and the driving-ball sound. By classifying the
events into different classes and using different statistical distribu-
tions for sequencing them, we can build a better model for the
sounds containing more than one kind of event.

Some sounds with both broadband noise and densely-packed
micro-transients are very difficult to segment into individual tran-
sient events from the residual information. It is difficult to get
global statistical features such as event density to control the re-
synthesis and the frame by frame method loses flexibility. Seg-
mentation of such complex sounds should also be explored to
generalize this method for flexible resynthesis.

6. REFERENCES

[1] E. Scheirer, B. Vercoe, “SAOL: The MPEG-4 Structured
Audio Orchestra Language,” Computer Music Journal, vol.
23, no. 2, pp. 31−51, 1999.

[2] L. Wyse, Y. Wang, X. Zhu, “Application of a Content-based
Percussive Sound Synthesizer to Packet Loss Recovery in
Music Streaming,” in Proc. of 11th ACM International Con-
ference on Multimedia (Berkeley, CA), pp. 335−339, 2003.

[3] J. Herre and J. D. Johnston, “Enhancing the Performance of
Perceptual Audio Coders by Using Temporal Noise Shaping
(TNS),” in Proc. 101st AES Conference., Nov 1996.

[4] G. Tzanetakis, P. Cook, “Musical Genre Classification of
Audio Signals,” IEEE Trans. on Speech and Audio Process-
ing, vol. 10, no. 5, July 2002.

[5] S. Dubnov, Z. B. Joseph, R. E. Yaniv, D. Lischinski, M.
Werman, “Synthesizing sound textures through wavelet tree
learning,” IEEE CGA, vol. 22, no. 4, pp. 38−48, Jul/Aug
2002.

[6] N. St. Arnaud, K. Popat, “Analysis and synthesis of sound
textures,” in Proc. AJCAI Workshop on Computational Audi-
tory Scene Analysis, 1995.

[7] W. H. Warren, R. R. Verbrugge, “Auditory Perception of
Breaking and Bouncing Events: Psychophysics,” Natural
Computation, W. Richards, Ed., pp. 364−375. MIT Press,
1988.

[8] M. Athineos, D. P. W. Ellis, “Sound texture modeling with
linear prediction in both time and frequency domains,” in
Proc. of Int. Conf. on Acoustics, Speech, and Signal Process-
ing, 2003.

[9] B. S. Atal, P. V. Cox, P. Kroon, “Spectral quantization and
interpolation for CELP coders,” Int. Conf. on Acoustics,
Speech, and Signal Processing, May 1989.

[10] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “On Clustering
Validation Techniques,” Journal of Intelligent Information
Systems, 2001.

 DAFX-5

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —349 349

	P_345.pdf
	SOUND TEXTURE MODELING AND TIME-FREQUENCY LPC
	INTRODUCTION
	SOUND TEXTURE MODELING
	Time Scale in Modeling Sound Texture
	TFLPC Modeling

	SYSTEM FRAMEWORK
	Frame-based TFLPC Analysis
	Event Detection
	Background Separation
	TFLPC Coefficients Clustering
	Resynthesis

	EVALUATION AND DISCUSSION
	Properties of reflection domain clustering
	Comparison with Other Methods
	An HMM Method
	Comparison with Event-Based Method

	FUTURE WORK
	REFERENCES

	Zhu
	Wyse

