

SONICBARD – STORYTELLING WITH REAL-TIME

SOUND CONTROL, SYNTHESIS AND PROCESSING

USING EMERGING BROWSER-BASED TECHNOLOGIES

Lonce Wyse Pallav Shinghal

Communications and New Media Department

National University of Singapore

lonce.wyse@nus.edu.sg

School of Computing

National University of Singapore

pallav@nus.edu.sg

ABSTRACT

sonicBard is a system providing real-time sound

interaction for traditional oral storytelling performers.

The system is designed to give storytellers an extended

capability to accompany themselves with music, sound

effects, and vocal voice transformations while minimally

disrupting their established performative techniques.

Since a given story may potentially incorporate dozens

of sounds, each with their own interaction demands, a

serious challenge is posed. The constraints stemming

from the “hands and eyes busy” nature of storytelling

leaves little room for the attentional demands of typical

computer-controlled instruments. This paper presents

the interface design and implementation, and describes

newly emerging browser platform capabilities upon

which we have chosen to develop sonicBard.

1. INTRODUCTION

sonicBard is designed as an instrument to be used by

traditional oral storytellers to accompany themselves

with sound. Some storytelling traditions are very

theatrical or visual, however we focus here on those that

are primarily oral and aural – an art of speech and

sound.

Of course, all live storytelling involves a

performative and visual element, and storytellers in

many different traditions use a variety of simple props

and instruments to support their oral craft. Props can be

anything, from stones knocked on a surface to signal a

change of scene[1], to fans, scarves, and staffs. The

instruments storytellers often for accompaniment range

from those in the lute and lyre families[2] such as the

Pipa[3] or guitar to percussion instruments such as

tambourines, rattles, or drums. sonicBard is

distinguished from traditional instruments because the

range of sounds it can generate is limited only by what

sound designers can create, and because it can process

sounds (such as the storyteller’s voice) as well as

generate them.

Our design goals are based on how stories are told

and shared, and on the way storytellers typically use

musical instrument[4]. One goal for the instrument was

to construct a system that is easy to hold, restricts the

teller as little as possible from moving about and using

their arms and hands to gesture when not using the

instrument, and to some extent even when the instrument

is being used. We also did not want the instrument to

require visual attention. These criteria determined our

choice of a hand-held mobile device as the instrument.

The fact that they system can control any sound, and

any number of sounds, creates a challenge for interface

design. Sounds must be selected and controlled in a

manageable way for a storyteller whose primary goal is

the story, not the instrument.

Another design goal for sonicBard is to maintain the

fluent way that stories are shared among storytellers in

oral traditions. This is a very difficult criterion for

computer-based technology to meet, since typically

physical media or installation on a device would be

required. A story on the other hand is essentially shared

once it has been told and heard. This design goal drove

the entire project to be developed on the web platform.

With sonicBard, “having” the sonically-enabled story

after hearing it is as simple as pointing a mobile device

browser at a URL.

2. SYSTEM DESIGN

The architecture for sonicBard consists of:

1) a collection of “sound models”,

2) a scene navigation and interface controller, and

3) a system for organizing collections of sounds

into “scenes” and providing mappings between

the controller and the sounds.

2.1. Sound Models

The collection of sound models are built using the

formative W3C Web Audio API[5] (discussed below).

In addition, we have constructed a library called

jsaSound which provides utilities (opcode-like

generators, unit converters, etc), templates (code for

frequently used model structures), and of primary

importance for the sonicBard project, a simple and

consistent interface for all sounds.

The jsaSound interface makes a clear distinction

between sound developers and sound users. Sound

developers use JavaScript, the Web Audio API, and the

jsaSound library tools to build sound models, whereas

sound users such as game, music application, or web

developers simply load, play, and set up relationships

between application or user actions and interactive

sound behavior. The API covering the key functionality

of jsaSound models is shown in Table 1.

The jsaSound API makes it straightforward to, for

example, create a graphical user interface that works for

all sound models (xxx.html to see it in action). The API

also makes it easy to create mappings between

controllers and sound behavior which is an essential part

of authoring story rigs in sonicBard.

play() Start the sound playing

stop() Stop the sound playing

release() Stop allowing any release

segment of a sound

setParam([name,

number], val)

Set a parameter value using

its natural units

setParamNorm([name,

number], val)

Set a parameter value using

a normalized range [0,1]

getParam ([name,

number], ["name",

"type", "val", "normval",

"min","max"])

Get information about a

parameter (e.g. its name,

type, value, or range in

natural units)

getNumParams() Get the number of

parameters a model exposes

getAboutText() Get textual information

about the sound model

Table 1. The single API exposed by all jsaSound

models built with the Web Audio API and

JavaScript.

2.2. Communication

The control interface and the synthesis are two separate

systems each implemented as web pages that

communicate with each other. The control interface is

accessed through a browser on a smart phone (where

access to accelerometers is also available through a

JavaScript API), and the synthesis system runs on a PC

(which may also function as the web server for both

systems).

The “bridge” between these two systems is a server

that also acts as a “message router”. The broad-level

functionality of this server is based on the concept of

“parties”. A “party” is a logical collection of controllers

and synths that share messages with each other, and is

indexed by a 9-character code shared between party

members. The concept is very similar to chat rooms.

When the controller web page is accessed, it

automatically generates the 9-character code that will

serve to identify a new “party”. The controller then

sends a "register" message to the server along with its

party code. After this, the controller sends messages to

the server whenever it receives a user-generated event

such as a button-press or a spatial motion signal (coming

from the accelerometers on the device). The controller

also displays its party code on the screen, so that a user

may use it to add a "synth" to the same party, as

described below.

The collection of sound models resides on a separate

web page. A machine running a browser that supports

the Web Audio API (discussed below) (Macs or PCs

running Chrome, Canary or Safari) points the browser to

the URL for this page. The “messaging” phase starts

when the user enters the 9-digit code that the synthesizer

page registers with the server to let it know it wants to

receive all messages from parties with the same ID.

Figure 1. The communication structure for the

controller and the synthesis systems. One machine

navigates to the synthesizer webpage, the other to

the controller webpage. A 9-letter code is used to

identify groups for message sharing.

A story rig is a collection of scenes, where a “scene”

consists of two main elements: the list of all models that

the synthesizer needs to load from the jsaSound library

and have available at one particular time, and a list of

“handlers” that represent the mappings from the range of

possible controller messages to the sound model

behaviors. Controller messages are mapped to states or

parameter settings across any number of sound models.

The desire to make story rigs sharable drove us to

consider the web as a platform for the entire system.

However, we have been stretching the limits of what is

possible on this platform just as host of new capabilities

are becoming available. The next section discusses these

new developments and the feasibility of the web for

large-scale interactive computer music and synthesis

systems.

3. THE WEB PLATFORM FOR CONTROL

COMMUNICATION AND SYNTHESIS

The browser has never been the platform of choice for

serious real-time interactive computer music and sound

synthesis. Up until recently, real-time sound synthesis

could only be accomplished in a specially written plug-

in such as the pure-Java ASound[6] where latencies

below 100ms were impossible to achieve on common

operating systems, or JSyn[7] which was originally built

on a back-end written in ‘C’ speeding things up, but still

Controller

webpage

Sound

webpage

server /

message router

required user installation. In 2008, Adobe Flash added

real-time synthesis on their pervasive platform. Despite

its popularity, Flash was still a browser plug-in, and the

real-time synthesis latency performance was abysmal.

In the late 1990’s, Netscape introduce JavaScript as

part of the browser platform. It became a standard way

to add interactivity to client-side browsers, but it was an

interpreted language and designed neither for large

software projects nor for demanding computational tasks

such as signal processing and synthesis (c.f.

Crockford[8] for a discussion of the strengths and

weakness of the language). Further hindering serious

sound application development in browsers is the

security procedures necessary for protecting users

running code from networked sites such as “sand-

boxing” that restricts access to the local operating

system, file system, and media such as the microphone

and video camera.

This is all changing very quickly now due to new

browser standards that are being defined in several of

the W3C working groups, and experimentally working

its way on to implementations from most major browser

platform providers. The confluence of related efforts in

JavaScript engines, server architectures, and web

standards for synthesis and security management are

creating significant new opportunities for music and

sound on the web, many of which sonicBard builds

upon.

Underlying all of the technological developments

above is the open-source V8 JavaScript engine built by

Google and released in 2008. The Chrome and Safari

browsers run on the V8 engine, as do the

communications and server technologies (Node.js and

Express resp.) discussed below. Using a combination of

“pre-compilation” instead of interpretation, efficient

memory management, and smart garbage collection, V8

and other modern engines represent a major

performance improvement over previous JavaScript

engines.

The most directly relevant enabler for sound and

music synthesis with browsers is the emerging Web

Audio API[5] standard. It provides an audioContext

object which runs graphs of nodes (such as oscillators,

filters, reverberators, waveshapers, mixers, and gain)

that sound developers construct by connecting the

outputs of one node to the inputs of another. Although

graph construction using the API is text based

(JavaScript code), this is conceptually similar to

graphical programming languages such Max/MSP and

PD. Predefined nodes also perform the computationally

demanding convolution and FFT operations . Of course,

the nodes that are defined in this emerging standard are

implemented by browser providers in native code.

Graphs are executed in a dedicated thread to guarantee

timely processing of the signal flow, and the result is

processing speeds and latencies that approach those of

native applications such as Max/MSP.

A limitation of the Web Audio API as it stands at the

time of this writing makes it difficult to incorporate use-

defined signal generating and processing algorithms.

Web Audio defines a ScriptProcessorNode which is

intended to be used for wrapping JavaScript code in a

that can be used in constructing the audio graphs with

the other system-defined nodes. This is obviously a

critical capability for the computer music community.

Unfortunately, the behavior and capabilities of the

ScriptProcessor node are quite different from other

nodes. They do not have the same access to time

information that other nodes have, do not support the

sample-accurate starting and stopping that other signal

source nodes do, do not support the AudioParam nodes

with their sample-accurate automation. Subramanian[9]

has provided details of these and related issues, as well

as code for reasonable workarounds. The potential of the

browser platform for serious computer music work will

pivot on the capability of this component of the Web

Audio API.

For real-time voice transformation in sonicBard, new

browser capability from a different working group

developing WebRTC[10] is used. WebRTC is an open

source project devoted to real time communication and

supports peer-to-peer media exchanges among other

things. The getUserMedia() method permits access to

the client video and audio inputs (with explicit user

permission). The Web Audio API can then grab these

streams and process them through the node graphs

discussed above. Latency is the key to usable signal

processing from external sources. On a 2.4GHz

Windows 7 machine, we have measured a 60ms

throughput interval from microphone to speaker which is

as fast as any other native applications on the same

platform using the default system audio driver. The

latency was measured by placing a microphone in front

of the speaker, parameterizing the volume levels to be

near the feedback threshold, delivering an impulse

response and recording signal to measure the feeback

delay times. On the Mac platform, the microphone-to-

speaker throughput is considerably shorter than what we

measured on Windows - too short, in fact, to be

measured using the method described above. The delay

time on Windows is noticeable to the storyteller using

the system for voice, but does not significantly interfere

with the ability to speak. On the Mac platform, the short

latency makes this browser-based system feel as natural

as using a PA system.

Node.js[11] is a server-side technology from Joyent

built on the Google V8 engine. It provides the capability

for connecting and exchanging messages between the

browser running the parametric controller interface

(typically on Android or iOS devices running Chrome)

with the browser pointed to the URL running the

synthesizer. Canning[2] described a similar messaging

passing system for musical notation. Among other

things, Node.js provides non-blocking event-driven i/o,

easy handling of JSON, access to a wide variety of

libraries that, for example, simplify socket usage, and

(through the usage of JavaScript), a very “consistent”

developer environment across both servers and clients,

making the code maintainable and extensible.

Express is a light-weight web application framework

that works with Node.js to serve the web pages

(technically, the “static” content) for both the controller

and the synthesizer. The advantages of using this server

are primarily pragmatic. First, it is much easier to use

than the weightier Apache on networked Linux servers

or setting up the “IIS” manager on Windows. The inter-

browser communication can be run over a wide-area

network, but for storytelling and other musical

applications, the typical latency and inconsistent

message packet delivery times are disruptive. Second,

using a single server for both the message routing, as

well as for serving static files, allows us to data access

issues created by the Same Origin Policy designed for

security in networked environments. Node and Express

can be run to serve pages from a local machine without

rewriting any code.

The world of computer music did not need yet

another language for sound synthesis and control.

However, the browser platform brings with it a host of

capabilities, opening up new creative possibilities.

Thinking of the browser as an operating system (which it

is in effect becoming), having sound synthesis and

processing capabilities built in to the operating system

makes it easy to integrate sound with the multitude of

applications written for that platform. Tremendous

networking and graphics capabilities are also in libraries

within the same system. Finally, since browsers are

supported on every major operating system and

hardware platform, the holy grail of platform

independent development may soon be upon us

(although admittedly, this promise has been dashed as

often as it has been made in the past).

4. AUTHORING

As described above, a story scene is defined by a set of

sounds that are “prepared” with mappings from the

control interface to specific behaviors controlled through

the jsaSound interface. There may be many scenes in a

story, each rigged with different sounds and mappings.

In order to provide a system that puts minimal

attentional demands on the storyteller, our initial design

consists of a single physical interface for all scenes

where all sounds are controlled by the exact same small

set of physical gestures.

The current interface consists of a toggle-button that

can turn a sound (or collection of sounds) on or off, and

a push-button that switches between two states of a

sound or set of sounds depending on whether the button

is being held down or not. Finally, the pitch and the roll

of the hand-held device are two independent controls

that can be mapped to a specific range of sound

parameters. An example of a mapping would be a drum

set rhythm turned on/off with the toggle button, and a

microphone that is always on, but switches between

“dry” (no processing), and “wet” settings for some effect

such as pitch shifting, filtering, or reverberation. For

additional consistency, we have been using the pitch-

angle of the device to control the volume of all sounds in

all scenes, leaving roll to control some other scene-

specific sound parameter - for the purposes of this

example, the tempo of the rhythm set. A scene also

defines the default settings that a scene opens with, and

how sounds close at the end of the scene (either stopping

immediately, or trailing off in a sound-specific “release”

mode).

Currently, the set of scenes that comprise a rig are

defined textually in a JSON data structure, but the goal

is to allow storytellers to define their own rigs using a

browser-based graphical tool and a database of sound

models. This is to support the mutability of shared

stories, but is also critical for allowing the creation of a

customized interface sounds that each individual

storyteller is most comfortable with.

5. STORYTELLING FEEDBACK AND THE

REAL WORLD

We put sonicBard into the hands of a professional

storyteller with a scene design informed by one of her

stories, and asked for feedback on all aspects of the

system from general set-up to the specific sound

behaviour. Most of the comments concerned the general

nature of the system.

Our assumption that we might be able to create a

system that would not interfere with the gestures a

storyteller would naturally make was brought in to

question. Although the device fits comfortably in one

hand and does not require visual attention, it does

impose some limits on the kinds of gestures that the

storyteller might otherwise make. A two-handed clawing

gesture is one simple and common enough example.

Possibly more important than the restrictions on certain

gestures, is the fact that the presence of the device would

be obvious to the audience. The teller commented that if

the audience understands that there is a device, and that

it is being used as an integral part of the performance,

then pretending it is not there would be more distracting

that unabashedly using it as a instrument/prop.

The possibility of treating the device as a prop with

some kind of understanding shared with the audience

about how it is used, opens up other possibilities for the

form factor. For example, a tablet would certainly free

up additional real estate for interaction, and at the same

time lend itself to the possibility of having a presence in

the same way that props or other instruments do. This

approach would however not relieve the design

constraint that the sounds be playable with minimal

cognitive or visual attentional demands.

Other practical consideration that came to light from

our user test was that if storytellers were going to be

expected to use their own devices for interaction, then

they would need to be “prepared” with more than just

the authored story rig. Real-world issues such as the

proximity of the intended interaction area on the screen

to hardware or menu buttons that change the device

behavior, the automatic landscape/portrait reorientation

that many phones offer by default, and of course, the

possibility of receiving phone all have to be managed

and represent a threat to seamless storytelling.

Storytellers are already confronted with a variety of

“risks” when they walk in to a venue to deal with

variable audience sizes, lighting conditions,

microphone/speaker set ups, and technical support

people they may have never met. Minimizing these

dangers for a successful storytelling event is of

paramount concern, so anything that presents a potential

technical difficulty, or that could disrupt the timing or

rapport with the audience is something to be avoided.

One thing that becomes clear in evaluating

technology for creative use is that artists do not have

problems in search of solutions in the same way that

users of technologies do in more goal directed

environments such as computer-supported collaborative

work (CSCW). In the latter case, the objectives are

clearer, and the effect of a technology introduced in to

that context can be measured objectively, for example,

in terms of time to achieve an objective. In creative

contexts, the goals are much harder to identify (e.g.

execute a satisfying musical transition), or at least harder

to measure.

Artists explore, create, and invent with what they

have rather than viewing what they do not have as a

problem. When we discussed the ability to create voice

transformations with our technology, the response from

the storyteller was that she already does that without

technology. If she needs more sounds than she could

possibly generate with a single instrument, she works

with a musician. Does that mean we are falling in to the

classic trip of creating technological solutions to

problems that do not exist?

One way forward to address this challenge for

evaluating technology in a creative environment is to

first establish that there is something new the technology

offers in a particular artistic context, and then provide

situated access to the new capability, and test whether or

not it is used. In this case, the test is not for how well (or

not) a problem is solved, but rather to what extent a new

technology is of value.

In the case of sonicBard, what differentiates the use

of the system from working with a co-performing

musician who has access to the same range of sounds

sonicBard offers, is the intimacy with which storytellers

can coordinate sound behavior with improvised aspects

(unplanned in some aspect of content or timing) of the

storytelling. For example, this system offers the teller the

ability to time sounds and voice transformations with

other story elements in a more intimate and nuanced way

than would be possible be coordinating with a separate

performer. Further testing along these lines is next on

our agenda.

6. SUMMARY

A sound and voice transformation instrument for

storytellers to use in accompanying their own stories is

being designed in collaboration with professional

storytellers. The system is pushing at the edges of the

technological capabilities of browser-based platforms

which we have found to be largely suitable with several

caveats that we hope will be addressed as the standards

and implementations evolve.

7. ACKNOWLDGEMENTS

We would like to thank storyteller Rosemary Somaiah

for the valuable feedback she provided, as well as for her

patience and willingness to experiment with our earliest

prototype. Thanks to Srikumar Subramanian for his

JavaScript wisdom and open source contributions to

jsaSound and sonicBard. This work was supported by

Singapore MOE grant FY2011-FRC3-003, “Folk Media:

Interactive sonic rigs for traditional storytelling”.

8. REFERENCES

[1] V. Bordahl, F. Li, and H. Ying, Eds., Four Masters

of Chinese Storytelling: Full-length Repertoires of

Yangzhou Storytelling on Video. NIAS Press, 2004.

[2] T. Sheppard, “Musical Instruments for Traditional

Storytelling,” Musical Instruments for Traditional

Storytelling, 01-May-2004. [Online]. Available:

http://www.timsheppard.co.uk/story/dir/traditions/in

struments.html. [Accessed: 03-Mar-2013].

[3] H. Werle-Burger, “Interactios of the media

Storytelling, Puppet Opera, Human Opera and

Film,” in The eternal Storyteller; Oral Literature in

Modern China, V. Bordahl, Ed. Curzon Press, 1999.

[4] L. Wyse and S. Subramanian, “Foundations of

interactive sound design for traditional storytelling,”

in Proceedings of the International Computer Music

Conference, Ljubjana, Slovenia, 2012.

[5] C. Rogers, “Web Audio API,” Web Audio API -

W3C Editor’s Draft, 2012. [Online]. Available:

https://dvcs.w3.org/hg/audio/raw-

file/tip/webaudio/specification.html. [Accessed: 03-

Mar-2013].

[6] L. Wyse, “A Sound Modeling and Synthesis System

Designed for Maximum Usability,” in Proceedings

of the 2003 International Computer Music

Conference: 29th September-4th October 2003,

Singapore, 2003, p. 447.

[7] P. Burk, “JSyn–a real-time synthesis API for Java,”

in Proceedings of the 1998 International Computer

Music Conference, Ann Arbor, MI, pp. 252–255.

[8] D. Crockford, JavaScript: the Good Parts. O’Reilly

Media / Yahoo Press, 2008.

[9] S. K. Subramanian, “Taming the

ScriptProcessorNode - Codaholic.” [Online].

Available: http://sriku.org/blog/2013/01/30/taming-

the-scriptprocessornode/. [Accessed: 03-Mar-2013].

[10] “WebRTC.” [Online]. Available:

http://www.webrtc.org/. [Accessed: 03-Mar-2013].

[11] “node.js.” [Online]. Available: http://nodejs.org/.

[Accessed: 03-Mar-2013].

[12] R. Canning, “Realtime Web Technologies in the

networked Performance Environment,” in

Proceedings of the International Computer Music

Conference, Ljubljana, Slovenia, 2012, pp. 315–

319.

