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ABSTRACT 

sonicBard is a system providing real-time sound 

interaction for traditional oral storytelling performers. 

The system is designed to give storytellers an extended 

capability to accompany themselves with music, sound 

effects, and vocal voice transformations while minimally 

disrupting their established performative techniques. 

Since a given story may potentially incorporate dozens 

of sounds, each with their own interaction demands, a 

serious challenge is posed. The constraints stemming 

from the “hands and eyes busy” nature of storytelling 

leaves little room for the attentional demands of typical 

computer-controlled instruments. This paper presents 

the interface design and implementation, and describes 

newly emerging browser platform capabilities upon 

which we have chosen to develop sonicBard.   

1. INTRODUCTION 

sonicBard is designed as an instrument to be used by 

traditional oral storytellers to accompany themselves 

with sound. Some storytelling traditions are very 

theatrical or visual, however we focus here on those that 

are primarily oral and aural – an art of speech and 

sound.   

Of course, all live storytelling involves a 

performative and visual element, and storytellers in 

many different traditions use a variety of simple props 

and instruments to support their oral craft. Props can be 

anything, from stones knocked on a surface to signal a 

change of scene[1], to fans, scarves, and staffs. The 

instruments storytellers often for accompaniment range 

from those in the lute and lyre families[2] such as the 

Pipa[3] or guitar to percussion instruments such as 

tambourines, rattles, or drums. sonicBard is 

distinguished from traditional instruments because the 

range of sounds it can generate is limited only by what 

sound designers can create, and because it can process 

sounds (such as the storyteller’s voice) as well as 

generate them.  

Our design goals are based on how stories are told 

and shared, and on the way storytellers typically use 

musical instrument[4]. One goal for the instrument was 

to construct a system that is easy to hold, restricts the 

teller as little as possible from moving about and using 

their arms and hands to gesture when not using the 

instrument, and to some extent even when the instrument 

is being used. We also did not want the instrument to 

require visual attention. These criteria determined our 

choice of a hand-held mobile device as the instrument.   

The fact that they system can control any sound, and 

any number of sounds, creates a challenge for interface 

design. Sounds must be selected and controlled in a 

manageable way for a storyteller whose primary goal is 

the story, not the instrument. 

Another design goal for sonicBard is to maintain the 

fluent way that stories are shared among storytellers in 

oral traditions. This is a very difficult criterion for 

computer-based technology to meet, since typically 

physical media or installation on a device would be 

required. A story on the other hand is essentially shared 

once it has been told and heard. This design goal drove 

the entire project to be developed on the web platform. 

With sonicBard, “having” the sonically-enabled story 

after hearing it is as simple as pointing a mobile device 

browser at a URL.  

2. SYSTEM DESIGN 

The architecture for sonicBard consists of: 

1) a collection of “sound models”,  

2) a scene navigation and interface controller, and  

3) a system for organizing collections of sounds 

into “scenes” and providing mappings between 

the controller and the sounds.  

2.1. Sound Models 

The collection of sound models are built using the 

formative W3C Web Audio API[5] (discussed below). 

In addition, we have constructed a library called 

jsaSound which provides utilities (opcode-like 

generators, unit converters, etc), templates (code for 

frequently used model structures), and of primary 

importance for the sonicBard project, a simple and 

consistent interface for all sounds.   

The jsaSound interface makes a clear distinction 

between sound developers and sound users. Sound 

developers use JavaScript, the Web Audio API, and the 

jsaSound library tools to build sound models, whereas 

sound users such as game, music application, or web 

developers simply load, play, and set up relationships 

between application or user actions and interactive 

sound behavior. The API covering the key functionality 

of jsaSound models is shown in Table 1. 



  

 

 

The jsaSound API makes it straightforward to, for 

example, create a graphical user interface that works for 

all sound models (xxx.html to see it in action). The API 

also makes it easy to create mappings between 

controllers and sound behavior which is an essential part 

of authoring story rigs in sonicBard. 

 

play() Start the sound playing 

stop() Stop the sound playing 

release() Stop allowing any release 

segment of a sound 

setParam([name, 

number], val) 

Set a parameter value using 

its natural units 

setParamNorm([name, 

number], val) 

Set a parameter value using 

a normalized range [0,1] 

getParam ([name, 

number], ["name", 

"type", "val", "normval", 

"min","max"]) 

Get information about a 

parameter (e.g. its name, 

type, value, or range in 

natural units) 

getNumParams() Get the number of 

parameters a model exposes 

getAboutText() Get textual information 

about the sound model 

Table 1. The single API exposed by all jsaSound 

models built with the Web Audio API and 

JavaScript. 

2.2. Communication 

 

The control interface and the synthesis are two separate 

systems each implemented as web pages that 

communicate with each other. The control interface is 

accessed through a browser on a smart phone (where 

access to accelerometers is also available through a 

JavaScript API), and the synthesis system runs on a PC 

(which may also function as the web server for both 

systems).  

The “bridge” between these two systems is a server 

that also acts as a “message router”. The broad-level 

functionality of this server is based on the concept of 

“parties”. A “party” is a logical collection of controllers 

and synths that share messages with each other, and is 

indexed by a 9-character code shared between party 

members. The concept is very similar to chat rooms. 

When the controller web page is accessed, it 

automatically generates the 9-character code that will 

serve to identify a new “party”. The controller then 

sends a "register" message to the server along with its 

party code. After this, the controller sends messages to 

the server whenever it receives a user-generated event 

such as a button-press or a spatial motion signal (coming 

from the accelerometers on the device). The controller 

also displays its party code on the screen, so that a user 

may use it to add a "synth" to the same party, as 

described below. 

The collection of sound models resides on a separate 

web page. A machine running a browser that supports 

the Web Audio API (discussed below) (Macs or PCs 

running Chrome, Canary or Safari) points the browser to 

the URL for this page. The “messaging” phase starts 

when the user enters the 9-digit code that the synthesizer 

page registers with the server to let it know it wants to 

receive all messages from parties with the same ID.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The communication structure for the 

controller and the synthesis systems. One machine 

navigates to the synthesizer webpage, the other to 

the controller webpage. A 9-letter code is used to 

identify groups for message sharing.  

 

A story rig is a collection of scenes, where a “scene” 

consists of two main elements: the list of all models that 

the synthesizer needs to load from the jsaSound library 

and have available at one particular time,  and a list of 

“handlers” that represent the mappings from the range of 

possible controller messages to the sound model 

behaviors.  Controller messages are mapped to states or 

parameter settings across any number of sound models.  

The desire to make story rigs sharable drove us to 

consider the web as a platform for the entire system. 

However, we have been stretching the limits of what is 

possible on this platform just as host of new capabilities 

are becoming available. The next section discusses these 

new developments and the feasibility of the web for 

large-scale interactive computer music and synthesis 

systems.  

3. THE WEB PLATFORM FOR CONTROL 

COMMUNICATION AND SYNTHESIS 

The browser has never been the platform of choice for 

serious real-time interactive computer music and sound 

synthesis. Up until recently, real-time sound synthesis 

could only be accomplished in a specially written plug-

in such as the pure-Java ASound[6] where latencies 

below 100ms were impossible to achieve on common 

operating systems, or JSyn[7] which was originally built 

on a back-end written in ‘C’ speeding things up, but still 
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required user installation. In 2008, Adobe Flash added 

real-time synthesis on their pervasive platform. Despite 

its popularity, Flash was still a browser plug-in, and the 

real-time synthesis latency performance was abysmal.   

In the late 1990’s, Netscape introduce JavaScript as 

part of the browser platform. It became a standard way 

to add interactivity to client-side browsers, but it was an 

interpreted language and designed neither for large 

software projects nor for demanding computational tasks 

such as signal processing and synthesis (c.f. 

Crockford[8] for a discussion of the strengths and 

weakness of the language). Further hindering serious 

sound application development in browsers is the 

security procedures necessary for protecting users 

running code from networked sites such as “sand-

boxing” that restricts access to the local operating 

system, file system, and media such as the microphone 

and video camera.  

This is all changing very quickly now due to new 

browser standards that are being defined in several of 

the W3C working groups, and experimentally working 

its way on to implementations from most major browser 

platform providers.  The confluence of related efforts in 

JavaScript engines, server architectures, and web 

standards for synthesis and security management are 

creating significant new opportunities for music and 

sound on the web, many of which sonicBard builds 

upon.  

Underlying all of the technological developments 

above is the open-source V8 JavaScript engine built by 

Google and released in 2008. The Chrome and Safari 

browsers run on the V8 engine, as do the 

communications and server technologies (Node.js and 

Express resp.) discussed below.  Using a combination of 

“pre-compilation” instead of interpretation, efficient 

memory management, and smart garbage collection, V8 

and other modern engines represent a major 

performance improvement over previous JavaScript 

engines.  

The most directly relevant enabler for sound and 

music synthesis with browsers is the emerging Web 

Audio API[5] standard. It provides an audioContext 

object which runs graphs of nodes (such as oscillators, 

filters, reverberators, waveshapers, mixers, and gain) 

that sound developers construct by connecting the 

outputs of one node to the inputs of another. Although 

graph construction using the API is text based 

(JavaScript code), this is conceptually similar to 

graphical programming languages such Max/MSP and 

PD. Predefined nodes also perform the computationally 

demanding convolution and FFT operations . Of course, 

the nodes that are defined in this emerging standard are 

implemented by browser providers in native code. 

Graphs are executed in a dedicated thread to guarantee 

timely processing of the signal flow, and the result is 

processing speeds and latencies that approach those of 

native applications such as Max/MSP.  

A limitation of the Web Audio API as it stands at the 

time of this writing makes it difficult to incorporate use-

defined signal generating and processing algorithms.  

Web Audio defines a ScriptProcessorNode which is 

intended to be used for wrapping JavaScript code in a 

that can be used in constructing the audio graphs with 

the other system-defined nodes.  This is obviously a 

critical capability for the computer music community.  

Unfortunately, the behavior and capabilities of the 

ScriptProcessor node are quite different from other 

nodes. They do not have the same access to time 

information that other nodes have, do not support the 

sample-accurate starting and stopping that other signal 

source nodes do, do not support the AudioParam nodes 

with their sample-accurate automation.  Subramanian[9] 

has provided details of these and related issues, as well 

as code for reasonable workarounds. The potential of the 

browser platform for serious computer music work will 

pivot on the capability of this component of the Web 

Audio API.  

For real-time voice transformation in sonicBard, new 

browser capability from a different working group 

developing WebRTC[10] is used. WebRTC is an open 

source project devoted to real time communication and 

supports peer-to-peer media exchanges among other 

things. The getUserMedia() method permits access to 

the client video and audio inputs (with explicit user 

permission). The Web Audio API can then grab these 

streams and process them through the node graphs 

discussed above. Latency is the key to usable signal 

processing from external sources. On a 2.4GHz 

Windows 7 machine, we have measured a 60ms 

throughput interval from microphone to speaker which is 

as fast as any other native applications on the same 

platform using the default system audio driver. The 

latency was measured by placing a microphone in front 

of the speaker, parameterizing the volume levels to be 

near the feedback threshold, delivering an impulse 

response and recording signal to measure the feeback 

delay times. On the Mac platform, the microphone-to-

speaker throughput is considerably shorter than what we 

measured on Windows - too short, in fact, to be 

measured using the method described above.  The delay 

time on Windows is noticeable to the storyteller using 

the system for voice, but does not significantly interfere 

with the ability to speak. On the Mac platform, the short 

latency makes this browser-based system feel as natural 

as using a PA system. 

Node.js[11] is a server-side technology from Joyent 

built on the Google V8 engine. It provides the capability 

for connecting and exchanging messages between the 

browser running the parametric controller interface 

(typically on Android or iOS devices running Chrome) 

with the browser pointed to the URL running the 

synthesizer. Canning[2] described a similar messaging 

passing system for musical notation. Among other 

things, Node.js provides non-blocking event-driven i/o, 

easy handling of JSON, access to a wide variety of 

libraries that, for example, simplify socket usage, and 

(through the usage of JavaScript), a very “consistent” 

developer environment across both servers and clients, 

making the code maintainable and extensible. 

Express is a light-weight web application framework 

that works with Node.js to serve the web pages 

(technically, the “static” content) for both the controller 



  

 

 

and the synthesizer. The advantages of using this server 

are primarily pragmatic. First, it is much easier to use 

than the weightier Apache on networked Linux servers 

or setting up the “IIS” manager on Windows. The inter-

browser communication can be run over a wide-area 

network, but for storytelling and other musical 

applications, the typical latency and inconsistent 

message packet delivery times are disruptive. Second, 

using a single server for both the message routing, as 

well as for serving static files, allows us to data access 

issues created by the Same Origin Policy designed for 

security in networked environments. Node and Express 

can be run to serve pages from a local machine without 

rewriting any code. 

The world of computer music did not need yet 

another language for sound synthesis and control. 

However, the browser platform brings with it a host of 

capabilities, opening up new creative possibilities. 

Thinking of the browser as an operating system (which it 

is in effect becoming), having sound synthesis and 

processing capabilities built in to the operating system 

makes it easy to integrate sound with the multitude of 

applications written for that platform. Tremendous 

networking and graphics capabilities are also in libraries 

within the same system. Finally, since browsers are 

supported on every major operating system and 

hardware platform, the holy grail of platform 

independent development may soon be upon us 

(although admittedly, this promise has been dashed as 

often as it has been made in the past). 

4. AUTHORING 

As described above, a story scene is defined by a set of 

sounds that are “prepared” with mappings from the 

control interface to specific behaviors controlled through 

the jsaSound interface.  There may be many scenes in a 

story, each rigged with different sounds and mappings. 

In order to provide a system that puts minimal 

attentional demands on the storyteller, our initial design 

consists of a single physical interface for all scenes 

where all sounds are controlled by the exact same small 

set of physical gestures.  

The current interface consists of a toggle-button that 

can turn a sound (or collection of sounds) on or off, and 

a push-button that switches between two states of a 

sound or set of sounds depending on whether the button 

is being held down or not. Finally, the pitch and the roll 

of the hand-held device are two independent controls 

that can be mapped to a specific range of sound 

parameters.  An example of  a mapping would be a drum 

set rhythm turned on/off with the toggle button, and a 

microphone that is always on, but switches between 

“dry” (no processing), and “wet” settings for some effect 

such as pitch shifting, filtering, or reverberation.  For 

additional consistency, we have been using the pitch-

angle of the device to control the volume of all sounds in 

all scenes, leaving roll to control some other scene-

specific sound parameter - for the purposes of this 

example, the tempo of the rhythm set. A scene also 

defines the default settings that a scene opens with, and 

how sounds close at the end of the scene (either stopping 

immediately, or trailing off in a sound-specific “release” 

mode).  

Currently, the set of scenes that comprise a rig are 

defined textually in a JSON data structure, but the goal 

is to allow storytellers to define their own rigs using a 

browser-based graphical tool and a database of sound 

models. This is to support the mutability of shared 

stories, but is also critical for allowing the creation of a 

customized interface sounds that each individual 

storyteller is most comfortable with.  

5. STORYTELLING FEEDBACK AND THE 

REAL WORLD 

We put sonicBard into the hands of a professional 

storyteller with a scene design informed by one of her 

stories, and asked for feedback on all aspects of the 

system from general set-up to the specific sound 

behaviour. Most of the comments concerned the general 

nature of the system. 

Our assumption that we might be able to create a 

system that would not interfere with the gestures a 

storyteller would naturally make was brought in to 

question. Although the device fits comfortably in one 

hand and does not require visual attention, it does 

impose some limits on the kinds of gestures that the 

storyteller might otherwise make. A two-handed clawing 

gesture is one simple and common enough example. 

Possibly more important than the restrictions on certain 

gestures, is the fact that the presence of the device would 

be obvious to the audience. The teller commented that if 

the audience understands that there is a device, and that 

it is being used as an integral part of the performance, 

then pretending it is not there would be more distracting 

that unabashedly using it as a instrument/prop.  

The possibility of treating the device as a prop with 

some kind of understanding shared with the audience 

about how it is used, opens up other possibilities for the 

form factor. For example, a tablet would certainly free 

up additional real estate for interaction, and at the same 

time lend itself to the possibility of having a presence in 

the same way that props or other instruments do. This 

approach would however not relieve the design 

constraint that the sounds be playable with minimal 

cognitive or visual attentional demands.  

Other practical consideration that came to light from 

our user test was that if storytellers were going to be 

expected to use their own devices for interaction, then 

they would need to be “prepared” with more than just 

the authored story rig. Real-world issues such as the 

proximity of the intended interaction area on the screen 

to hardware or menu buttons that change the device 

behavior, the automatic landscape/portrait reorientation 

that many phones offer by default, and of course, the 

possibility of receiving phone all have to be managed 

and represent a threat to seamless storytelling. 

Storytellers are already confronted with a variety of 

“risks” when they walk in to a venue to deal with 

variable audience sizes, lighting conditions, 

microphone/speaker set ups, and technical support 



  

 

 

people they may have never met. Minimizing these 

dangers for a successful storytelling event is of 

paramount concern, so anything that presents a potential 

technical difficulty, or that could disrupt the timing or 

rapport with the audience is something to be avoided.  

One thing that becomes clear in evaluating 

technology for creative use is that artists do not have 

problems in search of solutions in the same way that 

users of technologies do in more goal directed 

environments such as computer-supported collaborative 

work (CSCW). In the latter case, the objectives are 

clearer, and the effect of a technology introduced in to 

that context can be measured objectively, for example, 

in terms of time to achieve an objective. In creative 

contexts, the goals are much harder to identify (e.g. 

execute a satisfying musical transition), or at least harder 

to measure.  

Artists explore, create, and invent with what they 

have rather than viewing what they do not have as a 

problem.  When we discussed the ability to create voice 

transformations with our technology, the response from 

the storyteller was that she already does that without 

technology. If she needs more sounds than she could 

possibly generate with a single instrument, she works 

with a musician.   Does that mean we are falling in to the 

classic trip of creating technological solutions to 

problems that do not exist?  

One way forward to address this challenge for 

evaluating technology in a creative environment is to 

first establish that there is something new the technology 

offers in a particular artistic context, and then provide 

situated access to the new capability, and test whether or 

not it is used. In this case, the test is not for how well (or 

not) a problem is solved, but rather to what extent a new 

technology is of value.   

In the case of sonicBard, what differentiates the use 

of the system from working with a co-performing 

musician who has access to the same range of sounds 

sonicBard offers, is the intimacy with which storytellers 

can coordinate sound behavior with improvised  aspects 

(unplanned in some aspect of content or timing) of the 

storytelling. For example, this system offers the teller the 

ability to time sounds and voice transformations with 

other story elements in a more intimate and nuanced way 

than would be possible be coordinating with a separate 

performer. Further testing along these lines is next on 

our agenda.  

6. SUMMARY 

A sound and voice transformation instrument for 

storytellers to use in accompanying their own stories is 

being designed in collaboration with professional 

storytellers.  The system is pushing at the edges of the 

technological capabilities of browser-based platforms 

which we have found to be largely suitable with several 

caveats that we hope will be addressed as the standards 

and implementations evolve. 
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