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Phasors have a wide variety of uses in music and sound 
synthesis. At audio signal rates, phasors can be used as 
indexing functions for table oscillators. At control rates, 
phasors can be used as clocks to control tempo and trigger 
events. When simultaneous control over multiple phasors or 
oscillators is desired, there arises a conflict between the 
need to control their individual frequencies, and the need to 
coordinate the phase relationships between the different 
phasors. The problem is particularly acute in real-time 
systems where a flexible mechanism for negotiating between 
local and global control is necessary. This paper presents a 
spline technique for quasi-independent control over phasor 
frequency and phase, discusses the objects and interfaces in 
an implementation, and presents several examples to 
illustrate the utility of the system for signal and event 
generation, and for synchronization in real-time networked 
music environments. 

We will also consider the “unwrapped” phase which is the 
total number of periods executed by the phasor over some 
duration t (during which the frequency may be changing 
continuously). Taking the modulus 1 of the unwrapped 
phase yields the “principle phase” in the unit interval. 

 

Voice 1 

Voice 2 

t’

time t 

1 Introduction  
Figure 1. Time maps for two voices that intersect (are 

“synchronized”) at two points during the interval shown. 
The diagonal line represents a linear map with no time 

warping . 

The objective of the system described herein is to provide 
a method for synchronizing independent phasor-based 
musical or signal processes at specific points of time in a 
real-time performance environment. Coordinating 
independent musical voices at specific points in time has 
typically been addressed using the idea of “time maps” 
(Jaffe 1985, Honing 2001) or “time warping” (Dannenberg, 
1997). The idea is to use time warping functions that map 
linear time t to a “warped time” time t’:  

 

When synchronizing phasors, it is only relative phase that 
it is important, not the number of cycles accumulated from 
some reference time (e.g. the beginning of a piece of music). 
For example, consider two improvising musicians, each 
with control over periodic musical sound-generating 
algorithms (“models”) that are independently parameterized 
in real-time. One of the model parameters controlled by 
each musician is the frequency of a phasor that generates 
events at specific phases in its cycle (Figure 2). To create 
synchrony between the two independently controlled voices, 
a time warping mechanism would only need to consider a 
localized window of time rather than the entire history of 
the piece. 

         .                      (1)  ')( ttf →

Voices are synchronized where their warping functions 
intersect (Figure 1). A recent implementation of multi-voice 
“tempo cannons” using time maps is discussed in Collins 
(2003).  

One aspect that differentiates the current work from 
previous time map formulations is that the focus is on the 
cyclic behavior of phasors. For the purposes of this paper, 
we consider a phasor to be a function of time t that maps 
periodically into the unit interval at a rate of freq cycles per 
second: 

We commonly think of a phasor as having two attributes, 
frequency and phase. In the musical scenario described 
above, both the frequency of the event generating processes 
and the phase relationship between the two would be clearly  
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The warping functions that we will consider will map 
time to the unwrapped phase of an oscillator. Thus a map 
representing a phasor of constant frequency would appear as 
a line from the origin with a slope equal to the frequency.  
“Warping” amounts to deviating from the linear map to 
achieve specific phases and frequencies at the endpoints. 

The warping functions that we will consider will map 
time to the unwrapped phase of an oscillator. Thus a map 
representing a phasor of constant frequency would appear as 
a line from the origin with a slope equal to the frequency.  
“Warping” amounts to deviating from the linear map to 
achieve specific phases and frequencies at the endpoints. 
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In musical applications, at both signal and event control 
rates, a smoothness condition would typically be applied at 
the beginning and the end of the transition so that there are 
no sudden changes in frequency (or “tempo” if the phasors 
are triggering events). That is, we would like to specify the 
frequency of the phasor at the endpoints of the transition, 
and would most often choose the starting value to be equal 
to the frequency at the point when the transition was called 
for, and the endpoint to be equal to whatever frequency we 
want the phasor to continue with following the transition. 
Since the mapped value represents phase, and the derivative 
phase is the frequency, this amounts to the desire to specify 
the derivative of the mapping function at the endpoints. 

In musical applications, at both signal and event control 
rates, a smoothness condition would typically be applied at 
the beginning and the end of the transition so that there are 
no sudden changes in frequency (or “tempo” if the phasors 
are triggering events). That is, we would like to specify the 
frequency of the phasor at the endpoints of the transition, 
and would most often choose the starting value to be equal 
to the frequency at the point when the transition was called 
for, and the endpoint to be equal to whatever frequency we 
want the phasor to continue with following the transition. 
Since the mapped value represents phase, and the derivative 
phase is the frequency, this amounts to the desire to specify 
the derivative of the mapping function at the endpoints. 
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Figure 2.  Two independently controlled cyclic patterns 
with events triggered at specific phasor values.  Because 
the patterns are cyclic, there is no single reference time 

for synchronization. Instead, a reference is chosen in 
real-time and warping depends only on phase.  

for synchronization. Instead, a reference is chosen in 
real-time and warping depends only on phase.  

  
perceptible. Of course, the two attributes are not 
independent since frequency is just the rate at which phase 
changes. The only parameter the musicians have available 
for controlling the synchrony between their individual beat 
patterns is the frequency of their respective phasors. Skilled 
musicians would generally be able to maintain any 
particular phase relationship by continually adjusting their 
respective frequency parameters (at the expense of 
maintaining the exact frequency target).  However, a more 
difficult task would be for the two musicians to synchronize 
both the frequency and phase at a specific forward point in 
time that was itself determined in real-time. The task is 
difficult precisely because there is no independent control of 
frequency and phase. Even if the musicians were computers, 
how can a real-time system provide the sense that both 
frequency and phase are under independent control so that 
specific frequency and phase configurations can be achieved 
at specific points in time? This is the task to which the 
technique described in this paper is addressed.  
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Precomputed mapping functions are not possible for this 
task because of the requirement of being able to specify the 
endpoint derivatives at run time. What is needed is a simple 
and efficient method for computing the time-to-phase 
mapping functions on the fly that permit us the desired 
specifications of transition duration, start and end point 
derivatives, the number of total phasor cycles, and some 
way to control the maximum deviation of the warping. 
Clamped cubic splines fit the bill precisely. 

Precomputed mapping functions are not possible for this 
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endpoint derivatives at run time. What is needed is a simple 
and efficient method for computing the time-to-phase 
mapping functions on the fly that permit us the desired 
specifications of transition duration, start and end point 
derivatives, the number of total phasor cycles, and some 
way to control the maximum deviation of the warping. 
Clamped cubic splines fit the bill precisely. 

Splines are a technique for interpolation between known 
values of a function f at a sequence of points: f(x1), f(x2) 
…. f(xn), with polynomials between each pair of points. A 
cubic spline is constructed of third-order polynomials 
between the specified function values. A clamped cubic 
spline uses specified derivate values at the endpoints. The 
qualities of clamped cubic splines that are useful in the 
musical time map context are: 
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values of a function f at a sequence of points: f(x1), f(x2) 
…. f(xn), with polynomials between each pair of points. A 
cubic spline is constructed of third-order polynomials 
between the specified function values. A clamped cubic 
spline uses specified derivate values at the endpoints. The 
qualities of clamped cubic splines that are useful in the 
musical time map context are: 

  

2 Real-time time warping 2 Real-time time warping • they are smooth in the first derivative, and 
continuous in this second at the endpoints as 
well as all points in between. Musically, this 
means there are no abrupt frequency/tempo 
changes, 

• they are smooth in the first derivative, and 
continuous in this second at the endpoints as 
well as all points in between. Musically, this 
means there are no abrupt frequency/tempo 
changes, 

One way to provide quasi-independent real-time control 
over both frequency and phase in real time is to expose both 
attributes as parameters that control “target values” and then 
permit the system a certain (specifiable) duration of time in 
which to achieve the targets. The system would have the 
freedom to automatically manipulate the frequency over 
time so that the desired phase is reached at the exact point in 
time specified by the duration. During the transition 
interval, the frequency will have to be different from the 
target frequency, and in general, continuously changing. 
However, if the system is designed so that the transition 
time is short, and the frequency is constrained to deviate as 
little as possible from its target, then the sense of real-time 
frequency control need not be lost as phase control is 
gained.  

One way to provide quasi-independent real-time control 
over both frequency and phase in real time is to expose both 
attributes as parameters that control “target values” and then 
permit the system a certain (specifiable) duration of time in 
which to achieve the targets. The system would have the 
freedom to automatically manipulate the frequency over 
time so that the desired phase is reached at the exact point in 
time specified by the duration. During the transition 
interval, the frequency will have to be different from the 
target frequency, and in general, continuously changing. 
However, if the system is designed so that the transition 
time is short, and the frequency is constrained to deviate as 
little as possible from its target, then the sense of real-time 
frequency control need not be lost as phase control is 
gained.  

• the function achieves the specified values 
(phasor values) exactly at tabulated points, 

• the function achieves the specified values 
(phasor values) exactly at tabulated points, 

• the “clamped” conditions that give this type of 
spline its name are the slopes of the function at 
the end points, which correspond to the 
frequency of the phasors at the beginning and 
end of the transition period, 

• the “clamped” conditions that give this type of 
spline its name are the slopes of the function at 
the end points, which correspond to the 
frequency of the phasors at the beginning and 
end of the transition period, 

• the computational effort for solving the system 
to create the spline function is linear in the 
number of tabulated points.  

• the computational effort for solving the system 
to create the spline function is linear in the 
number of tabulated points.  
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Details on how splines are computed can be found in 
standard texts (cf. Press et al., 1988). Once the spline map 
has been computed following a real-time parameter change,   
then the warped function value is available continuously at 
any x value between the specified endpoints.  

3 Phase tracking 
“Tracking” is the term we use for the process of adjusting 

phasor frequency continuously over time to reach specific 
frequency and phase values. A phasor with tracking 
capabilities has been built into a pure Java library and real-
time synthesis system described in Wyse (2003). The phasor 
object and application programmer interfaces (API’s) are 
described briefly below because they illustrate some of the 
issues that arise in synchronizing phasors in real time. 

Phasor objects are initialized with a sample rate, sr, and 
controlled with a frequency parameter, freq. After 
initialization, the phasor is “sampled” by calling the Phasor 
“tick()” method which will advance the phase by freq/sr and 
return the new phase value.  

To initiate the synchronization transition, phasors objects 
have a family of trackX() methods. When they are called, a 
spline function is created to the specification supplied in the 
trackX() argument list. The phasor goes into a “tracking 
mode” that lasts for the duration specified to achieve the 
desired phase and frequency. During that time, the advance 
of the phase value in response to the “tick” method is 
determined not by the normal phasor frequency parameter, 
but is set on a sample-by-sample basis by the spline function 
values until it has achieved the desired end phase and 
frequency after exactly the specified duration.  

Different  trackX() methods allow for different ways of 
specifying the desired behavior during the spline 
interpolation interval:  

• trackCycles( numcycles, targetfreq, duration) – 
rotates through an exact (real-valued) number of 
cycles over the specified duration and clamps the 
slopes at the spline endpoints to the current phasor 
frequency at the beginning, and the targetfreq 
argument at the end.  This method is typically 
called by other trackX() methods, rather than sound 
model programmers because it requires the caller 
to know current phases, and compute the desired 
number of cycles necessary to arrive at the 
implicitly desired phase that will create synchrony 
across different phasors.  

• trackPhase( targetphase,  targetfreq,   duration) – 
this method affords a more user-friendly argument 
list and internally computes the actual number of 
cycles the phasor must execute over the duration to 
arrive at the desired target phase and target 

frequency. Of course, the number of cycles to 
execute is not defined without further conditions 
because for any real-valued number of cycles that 
satisfies the argument conditions, adding an integer 
number of cycles will also satisfy the conditions. 
The actual number of cycles is computed as the 
average of the starting and ending frequencies 
times the duration, and is then adjusted the minimal 
amount to meet the phase requirement. Note that 
the phase adjustment might be positive or negative; 
the one of smaller absolute value is chosen for 
minimum frequency perturbation.  

• trackPhase( targetphase,  targetfreq,   duration,  
direction) – the same as above, except the 
adjustment for phase is forced to go in either the 
positive or negative direction. This turns out to be 
particularly important when the total number of 
cycles is small and carried out over control/event 
time scales.  

• trackPhase( ref_freq,  ref_phase,  target_phase_rel,  
targetfreq, duration) – another convenience 
method that allows phase synchronization to a 
(fixed-frequency) reference phasor. This interface 
permits a conceptualization of the synchronization 
process in terms of musical beats rather than clock 
time.  

3.1 Traveling Backwards 
Jaffe (1985) disallowed time maps with negative 

derivates – those that represent traveling backwards through 
the score. In our case, this corresponds to running a phasor 
with negative phase increments. Mappings considered here 
are from real-time to phase values, and never the other way 
around. The need for representing or computing inverse 
maps does not arise as it does when computing maps from 
score time (Dannenberg, 1997), so there is no other reason 
than a composer’s intentions for preventing negative 
derivatives. However, if we allow negative derivatives to be 
computed in a real-time system, then some extra care is 
required, particularly at the slow time scales that typically 
control events. The danger is that with parameters changing 
in real-time, continuously recomputed time maps that permit 
negative derivatives can result in the process repeatedly 
“scratching” over a particular phase region and rapidly 
retriggering any events that are hooked to phases in the 
region. With cubic splines, this situation arises quite 
commonly in practice when slowing down an oscillator 
where the phase advancement across the endpoints is small 
and the derivative (frequency of the phasor) is the same at 
both endpoints (Figure 3). The minimal order cubic spline 
tends to create the characteristic S shape with a negative 
derivative between the two extrema.  

There are two ways that the problem can be addressed. 
One is to increase the order of the spline so that there are 

453



more segments. This adds to the computation since the 
spline needs to be recomputed for every parameter update 
(which in the situation described is frequent). Notice that in 
cases where the negative derivative happens over phase 
values that are not associated with events, then the shape of 
the map function is not manifested sonically at all.  A    

 

 

negative phase increment 

t’ 
(a) 

 

time t 
 

Figure 3. When the phase advancement over the 
duration of the spline is small, the cubic s-shaped 

interpolator can generate a negative slope causing the 
phasor to to run in reverse. If there is any sounds or 

events tied to the phase values in this range, this leads to 
“scratching” repeatedly over them . 

straight-forward way to avoid the dangers of changing the 
direction of phase increments is to simply use the low-order 
spline with its negative derivative, but fix the value of the 
event phasor during these periods until the spline tick() 
method returns phases that represent positive increments 
again. In this situation, this strategy prevents scratching as 
effectively as increasing the order of the spline, but without 
the additional computational burden.  

(b) 

Figure 4.  Two Lissajou figures each with frequency(x) = 
2*frequency(y)  a) with a 0 phase difference between the 

two sinusoidal indexing functions at time t=0, and b) 
with a pi/5  phase difference between the two indexing 

functions at time t=0.  

this case, the shape of the Lissajou figure, and thus the 
elements being read from the 2D wavetable, depends 
significantly on the phase difference between the two 
indexing oscillators (Figure 4a,b), and the “natural” 
parameter for controlling the system becomes phase rather 
than frequency. 

4 Musical Possibilities 
Wave terrain synthesis (cf. Roads, 1996) is one example 

of a signal-rate application that can benefit from the ability 
to manipulate phase and frequency quasi-independently. 
Wave terrain synthesis uses a 2D table as a transfer 
function, and a 2D indexing function. A common indexing 
method is a Lissajou function, a curve generated by two 
sinusoidal oscillators; one that determines the x-coordinate, 
the other that determines the y-coordinate used for reading 
an interpolated value from the 2D wavetable (Figure 4).  

It may be that short transition times and minimal frequency 
deviation is not the desired use for this synchronization 
mechanism. Long slow transition times between 
synchronization points can be put to wonderful musical 
effect as demonstrated by, for example, Colin Nancarrow’s 
Player Piano Study #21. This piece is for two voices with a 
cyclic event pattern, and uses the entire 3 minute duration of 
the piece to make the transition from the event phase 
synchronization at the beginning to that at the end.  

We can think of the indexing oscillators as sinusoidal 
functions of phasor values in order to use the concepts and 
implementation described above. If the phasor-determined 
frequencies of the two indexing oscillators are not related by 
an integer multiple, then the resulting Lissajou figure 
appears to be a 2-D projection of a contour rotating in 3 
dimensions.  Specifying phases at particular points in time 
only shifts the resulting sound in time. However, if the 
frequency of one oscillator is an integer multiple of that of 
the other, then a stable 2-D path is traced periodically. In 

These phasor synchronization techniques can be used 
musically in a way analogous to “keyframes” in animation. 
Consider multiple voices, each generating a periodic pattern 
of events; a simple example would be a set of church bells 
each with their own pitch and period. Keyframes in this 
context are specific patterns across voices such as different 
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arpeggios. A performer could then, in real time, choose one 
of the predefined keyframes, and set a time interval during 
which the individual voices would all have their periods 
minimally adjusted so that after the specified time, the 
keyframe event pattern would be produced. Spline maps 
defined only by two endpoint values and slopes produce an 
“ease in, ease out” effect that is frequently useful musically, 
and is also analogous to animation keyframing techniques.  

Another important context for the real-time 
synchronization capabilities described above is network 
communications. With fast internet communications capable 
of carrying live video and audio data, the prospect of 
musicians who are physically located around the globe to 
jam together becomes feasible. However, dividing half the 
circumference of the earth (20K kilometers) by the speed of 
light (300K km/s) we see that physics imposes a minimum 
delay of 67 ms on audio communication at this distance. In 
practice, network switching and buffering typically create 
delays of longer than this. If the network is carrying only 
low-bandwidth parameters for the remote control of 
synthesis (rather than audio signals), then jitter in the timing 
also becomes an issue. These factors would seem to make 
tight synchronization between distant musicians impossible. 

   One solution takes advantage of new relationships 
between performance gesture and sound events that are 
being explored in contemporary music whether networked 
or not. If the one-to-one mapping between gesture and 
musical event that characterizes traditional instrument 
performance is abandoned in favor of mapping gesture to 
less time-sensitive parameters or second order timing 
parameters, then satisfying remote real-time musical 
collaborations can still be supported. If, for example, tempo, 
syncopation, or cross-voice synchronization were the 
parameters under control rather than individual events, then 
absolutely precise timing between multiple event streams 
controlled by remote performers is possible under any delay 
and jitter conditions. Of course, there would still be limits 
on precisely when synchronization would occur but not on 
how precisely the synchronization could be achieved 
between the remotely and locally controlled voices. 
Performers on both sides of the network divide could be 
sure of the results of their performance actions, and that they 
were having the same audio experience as that of their 
distant counterpart. 

5 Summary 
A method of giving performers a sense of independent 

control in real-time over both the frequency and relative 
phase across multiple phasor-driven processes was 
presented. The method is akin to classic time maps 
discussed in earlier literature, and is based on a clamped 
spline interpolation that is specified with musically 
meaningful parameters. An implementation and interfaces 
were developed in a musical context, and examples at both 
the signal and the event control rate show the utility of the 
method in a variety of realistic real-time musical 
environments. 
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