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Abstract 

This paper deals with the application of spatially lo- 
calized, non-overlapping features for face recognition. 
The analysis is carried out b y  using the features gener- 
ated from two closely related techniques known as Inde- 
pendent Componen,t Analysis (IGA) and Non-negative 
Matrix Factorization (NMF). A set of statisically in- 
dependent basis vectors with sparse features is derioed 
from ICA. Likewise, NMF is used to yield sparse rep- 
resentation of localized features to represent distribated 
parts ower a human face. Similarities between recon- 
structed faces of test images and a set of synthesised 
face representations from the basis vectors derived from 
an image database using the two techniques are mea- 
sured. The strengths and weaknesses of each method in, 
the contezt of face recogntion are discussed. 

1. Introduction 

Multivariate data can be represented by sub- 
space projections such as principal component analy- 
sis (PCA) [13], independent component analysis (ICA) 
[ll], or lion negative matrix factorization (NMF) 171. 
These methods can be categorized as global or local 
feature based niethods depending on the amount of in- 
fluence imposed by the image pixels on the output fea- 
tures. The local feature based methods where only a 
few pixels in the input image contribute to the forming 
of the output image have better stablility over global 
feature based methods where each pixel in the image 
is contribnted to  the formalization of output features. 
Some of the advantages of using local feature based 
methods over global methods are their less responsive- 
ness to occlusions, scale and lighting variations, and 
rotations. In this paper, we are interested in analysing 
only the local feature based approaches. Two such lc- 
cal feature based methods are ICA and NMF. 

The Independent Component Analysis(1CA) pro- 
vides a linear representation that mininiizes the sta- 
tistical deperidericies among its components, based on 
higher order statistics of the data. These dependen- 
cies among higer order features could be removed by 

isolating independent components. The ability of the 
ICA to handle higher-order statistics in addition to  the 
second order statistics is nseful in achieving an effec- 
tive separatation of feature space for given data. The 
higher order features are capable of capturing invariant 
features of natural images. The distribution of face im- 
ages is unlikely to  be Gaussian due to the reason that a 
face can populate to  more than one region in the image 
space due to its miiltifariousness. Therefore, the dis- 
tribution of a face in a low dimensional feature space 
after a projection such as PGA is also unlikely to be 
Gausssian [12]. These assumptions support the use of 
ICA for facial feature extraction under non reduced and 
reduced face representations. In representing the non- 
gaussian sources such as face images, tlie ICA has po- 
tential advantages over global PCA. Such advantages 
are, provision of a better probabilistic model of the 
data, which gives a better identification of the data 
clusters in tlie n-dimensional space: a unique uiimix- 
ing of data  and the ability to handle higher order data  
[3]. Fnrther? previous research indicate that the fea- 
tures extracted from ICA are similar to those observed 
in the primary visual cortex [ll] and have rcseinblence 
to the features extracted by Gabor wavelets. 

A recently emerged approach known as Non- 
negative Matrix Factorization (NMF) is also sugges- 
tive of some aspects of activation patterns in response 
to images in the mammalian visual cortex. In NMF: as 
the name implies, the non-negativity adds constraints 
to the matrix factorization, allowing only additions in 
the synthesis; there are no caricellations or interfer- 
ence of patterns via subtraction or negative feature 
vector values. This leads more naturally to  the riotion 
of parts-based representation of images [7] [8]. With 
the underlying non-negative constraints, NMF is able 
to learn localized parts based representations. Sparse 
coding with NMF s e e m  befitting especially for face 
recognition applications as the features of face images 
are naturally represented as a small collection of fea- 
tures, namely eyes, nose and mouth, which are dis- 
tributed over the face. Because the outputs of NMF 
are localized features, we can use thesc parts based 
features collectively to represent a face. 
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2 Independent Component Analysis 

Finding a suitable transformation to best represent 
the data is essential for many or all pattern recogni- 
tion tasks. Linear transforms such as PCA and factor 
analysis based on second order statistics are commonly 
used due to  their simplicity in manipulation. In sec- 
ond order methods; a representation with minimum re- 
costruction error of the data is found using the infor- 
mation contains in thc covariance matrix of the data. 
It is assumed that all the information of Gaussian vari- 
ables (zero mean) is contained in the covariance matrix. 
However; most data sets such as face images are cha,r- 
acterized by non Gaussian and higher order features 
where higher order methods are needed for providing 
meaningful representations for such data. 

There exist linear and non-linear forms of the ICA 
that, can represent data in the sense of higher order 
statistics. For most applications, the linear trans- 
form is sufficitent. The ICA of the random vector 
x = (zl, ..., z , ) ~  finds a linear transform s = Wx so 
that the components si are as independent as possible 
in the sense of highest order statistics. This is achieved 
by maximizing some function F ( s l ,  ...., sm) known its 

contrast function that nieasures independence among 
the components si. 

The ICA estimates the following generative model 
for the random vector x 

x = A s  (1) 

The matrix A is a constant inxm mixing matrix. Us- 
ing the ICA algorithm an  estimation of the indepen- 
dent components can he achieved. The columns of A 
represent features, and st is the coefficient of the it' 
basis feature in the observed data vector x. 

Several algorithms have been proposed for the es- 
timation of ICA model. Here, we describe the IC.4 
algorithm introduced by Bell & Sejnowski [5] that is 
based on the principle of optimal inforAation transfer 
through sigmoidal neurons. Given an'  n dimensional 
random data vector x and a n x n invertible matrix 
W; we can write 

The variables in n dimensional random variable U 
are the linear combinations of input data that can be 
interpreted as activations of an n input neurons in a 
network. Let the random variable Y represent the ont- 
put of 11 neurons of the network. The aim of this algo- 
rithm is t o  maximize the mutual information between 
the input data vector x and the neural network output 
Y .  By maximizing the mutual information. the neural 
network achieves independence at  the output.IvIntua1 
Information can be written as 

I(x,Y) = H(Y) - J W x )  (3) 

where H ( y )  denotes the entropy of the output of the 
network and H(y1x) is the entropy that is transfered 
to the output, which does not come from the input. 

Prior t o  learning, sphering is performed on the 
data in order to uncorrelate the data. The sphering is 
carried out by subtracting the mean of x from x and 
then passing the zero mean data to a whitening matrix 
W,, where Mi = Z*(Cov(x))-'/*. The ICA transform 
matrix, learned with the sphered data can be given as 
Wi,, = WWZ where W is the learned weight matrix 
calculated by ICA. The inverse matrix T V '  of the 
weight matrix W is known as the source mixing matrix. 

2.1 ICA Basis 

Given a matrix F where each row is an image of 
the set {f l , f i ,  ...f,t} of n images, and where S is a set 
of unknown origznal sources. According to Eq. ( I ) ;  we 
can write the matrix F as F = AS where A is a mixing 
ma,trix which mixes the original sources S to produce 
the faces in the matrix F .  

The function of ICA is to find the independent 
soiirces in S.  Due to the computational complexity 
involved this is usually carried out in two stages. In 
the first stage, the data set is reduced using the PCA. 
The implementation is same as the one carried out by 
[3] to evaluate performance of ICA for a set of images 
with different view points and lighting variations using 
statistically independent basis images. 

The data matrix F whose row vectors are the images 
in the training data set, we can write F = [flfi .... fnlT. 
By performing PGA on F :  the reduced representa- 
tion of the training data set can be given as a P = 
[pIp 2....pnL]: where p i  are the m principal component 
vectors corresponding to the highest eigen valnes where 
7n < n.. 

The next step is to perform ICA on the reduced rep- 
resentation P. As the matrix P has more rows (size of 
each image) than columns (number of principal com- 
ponents) ICA is performed on the transpose of the ma- 
trix P (Pt = PT) resulting in a number of basis vectors 
eqnal to number of principal components retained for 
computations (m). 

The recovered set of sources {UI,U~>...U~~} in the 
rows of the matrix U of the reduced data  matrix Pt 
can be written as U = WP, where W is the unmixing 
matrix which separates the mixes from the matrix P 
such that A = W-'. 

The m rows of the matrix U contain the statisti- 
cally independent basis vectors derived for the reduced 
training image representation. 

The projection of a data matrix F on to reduced 
feature space of can be expressed as P + f(F). 
and the recovered sources U = WicnPt where Pt = 
W;:U. Hence the reconstructed image set F' = FPPt 
and by substituting for Pt? 

Proc. ISPAO3 606 



F' = FPW;,,-'U 

Let 
H = FPIVL; (4) 

F ' = H U  ( 5 )  
then 

where each row of H contains coefficients which caii be 
used to linearly combine the the basis images in U .  By 
doing so, we can reconstrnct the iniages in the rows of 
the matrix F .  

For a given training set Ftrnin and test set F,,,,: we 
can write Ht,,i,, arid H+,,t as HtToin = Ft,,,,PM~t,,~i 
and Ht,,, = FtesLPW;ca-l> respectively, A dis- 
tance metric applied between the elements of H,,,,: 
hltesL and Ht,,in, hjtrai" is used to measure the sirni- 
larity of a giveri test image to an iniagc in the database. 

3 Non-Negative Matrix Factorization 

Given a data matrix F = {F;j}7LxT,> non-negative 
matrix factorization refers to the decomposition of t,he 
matrix F into two matrices W aiid H of size RXT and 
rxm, respectively, such that 

F = W H  (6)  

where the clenients in W and H are all positive wines. 
From this decomposition, a reduced representation is 
achieved by choosing T such that T < n and r < 7n. 

In NMF, 110 negative entries are allowed in rnatrix 
factors IV and H whereby nonnegativity constraint is 
iniposcd in factorizing the data matrix F limiting data 
manipulation only to  additions (no subtractions are al- 
lowed). This leads to the idea of reconstructing an 
object by adding its representative parts collectively. 
Each colnnin in the matrix W is called a basis image, 
and a colunin in the niatrix H is called an encoding. An 
image in F (:an be reconstructed by linearly coinbin- 
ing basis images with the coefficients in an encoding. 
Tlie ericodings influence the activation of pixels in the 
original matrix via basis images. 

Given a data matrix F ?  Lee and Senng 171 developed 
a technique for factorizing the F to  yield matrices W 
arid H as given iri Eq. (6).  Each eleinent in the ina- 
t,rix F eau be written as Fij = xi=, IVtpHpj where T 

represents the nuinher of basis images and the number 
of coefficients in an encoding. The following iterative 
learning rules are used to find the h e a r  decomposition 
171: 

(9) 

Tlie above unsupervised multiplicative learning 
rules are used iteratively to update W arid H .  The 
initial values of IV and H are fixed randomly. At 
each iteration, a new value for W or H is evaluated. 
Each update corisists of a multiplication and sums 
of positive factors. With these iterative updates, the 
qnality of the approximation of the Eq. (6) improves 
monotonically with a guaranteed convergence to a 
locally optimal matrix factorization [SI. 

3.1 NMF Basis 

The data matrix F ,  is constructed such that the 
training face images occupy the colnmns of the F 
matrix. Let the training face set be rtraiu = 

i ,f,, }, F = [flfz . . f , ]  and p 
represents the mean of all training images. Learning 
is done using Eq.s (7)-(9) to decompose the matrix 
F into 2 matrices, H and W .  Let tlie basis images 
be represent.ed as W = [ W I W ~ .  . . w,] and encodirigs 
as H = (hlhz.. .h,,,]: where each face fi in F caii 
be approximately reconstructed by linearly combining 
the basis images, and the corresponding encoding CD- 

efficients hiT = [hlzhz2 . .  . h,,] as shown in Figure 1. 
Hence: a face can be modeled in tcrnis of a linear su- 
perposition of basis fnnctions together with encodings 
as follows: 

(fl train, f2 tmin , , , tF*%n 

For each face fi in the training set and test set, we 
calculate thc correspondiiig encoding coefficients. The 
basis images in IV are generated from the set of training 
faces; rtrazn. The encodings, h; of each training face f; 
is given by 

h; = IV'f; 

where IVt is tlie pseudoinverse of the matrix W .  
Once trained; the face image set, { f i , f 2 : . . .  , fm} is 
represented by a set of encodings {hl> hz, . . . , h , }  
with reduced dimension, T .  A distance metric is used 
to  calculate the siniilarity between hitrain and hjtest;  
encodings of a training image arid a test image. 

4 Experiment 

4.1 Database 

The experiments were carried out on R42VTS face 
database from University of Snrrey: which consists of 
1180 images, with 4 images per person taken at four 
different times (onc month apart). Though similar 
lighting conditioris and backgrounds have been used 
during image acquisition, significant changes' in hair 
styles, facial hair, presence and absence of g1;tsses 
introduce variability into the images. These images 
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are of frontal and near frontal views with somewhat 
dissimilar facial expressions. The original image size is 
726 x 576 pixels and the database contains iniages of 
Caucasians and Asian males and females. The images 
are normalized for scale, rotation, translation and 
illuniination invariance. 

4.2 Preprocessing and Normalization 

The preprocessing of images facilitates minimizing 
the variances among faces of the same iqdividual while 
maximizing the variance between different individuals. 
These variances occur in scale, rotation, translation 
and lighting conditions existing among captured im- 
ages at different time instances. 

The normalized outpiit images have consistent grey 
levels across all images in the database. The eye po- 
sitions are fixed at  preset coordinates. For the exper- 
iment,s, the final image size is reduced to  64x64 from 
the original size of 150x200 by re-sampling the images. 

The geometric normalization used in our approach 
is based on the manually located eye positions. In 
order to achieve faces invariant to rotation, translation 
and scale, a transforma,tion matrix is computed by 
joining the located eye positions on a horizontal 
segment having a length of 52 pixels separating the 
two eyes in the original dinlensions [lo]. The re- 
distribution of intensity values of the image is carried 
out using histogram equalization thereby producing 
an image with equally distributed intensity values. 

4.3 Data Preparation 

The database is divided into 2 subsets, a training 
set and a test sct. The training data sct consists of 
an equal number of male and female images. The 
total number of images used for training is 834. Each 
individual contributes 3 face images for the training 
set and a single image to the test set. 

4.4 Recognition Performance 

Here we compare the recognition performance of 
ICA and NMF in face recognition. As a baseline mea- 
sure for recognition, we further compare the results 
with PCA. The cosine of the angle between the two 
data vectors, one from the training set and the other 
from the testing set is taken to calculate.the similarity 
measure; s. 

For our experiment, 834 images in the database were 
projected on to a reduced image space using PCA. Fig- 
ure (I), illnstrates the amount of variance information 

captured by eigen components as a cumulative percent- 
age. From this plot we see tha,t the first 200 principal 
components alone are able to capture 97% of the wri- 
ance distributed a,niong the 834 images in the database. 
A snbset of these eigenfaccs are shown in the 2nd row 
of the Figure (5). 

The ICA was then perfornied on these eigenfaces 
to extract a set of statistically independent non-global 
basis. A subset of these extracted basis images are 
shown in the 3rd row of the Figure (5). This was 
performed for several sets of principal components, 
50, 100,150,200,300 separately. For each set of princi- 
pal components, the sources were recovered and a mix- 
ing matrix was calculated. With the similarity measure 
given in the Eq. ( l l ) ,  we then measured the recogni- 
tion accuracy for each subset at an incremental order 
of 25 Components up to the maximum number of com- 
ponents extracted. The results are shown in the Fig- 
ure (2).  The Figure(3) illustrates the search rates of 
the first correct hits evaluated for each feature subset 
at  an incremental order of 10 components up to the 
maximum number of components extracted. From this 
graph, we see tha,t, for our probe set the search rate 
for the correct, hit is remarkably low even with the in- 
creasing number of independent components. 

Next we compared the recognition results from PCA 
and ICA using the Euclidean and the cosine measure 
given in Eq. (11). In both cases, the results achieved 
for PCA were superior to the results a,chieved for ICA. 
These results axe in accordance with the test results 
acquired by Baek, K. et  al. [2] by using ICA for a similar 
probe set in FERET database a,nd are shown in Figure 
(4). Likewise for NWIF, we experimented with different 
ranks so as to measure the recognition strength with 
varying ranks. Under the same initial conditions, we 
generated basis images and encodings for the ranks, 
T = 25,49,81,121,144. Figure (4) also illustrates the 
recognition performance of NMF at each rank given 
above. From this, we see that NMF outperforms both 
PCA and ICA significantly. 

4.5 Analysis 

According to the results achieved, we see that the 
PCA is able to  capture overall variances in face images 
and able to minimize the reconstruction error when re- 
constructing images from the reduced data set. With 
ICA, the goal is to  minimize the statistical dependence 
between the basis vectors. Though these basis vectors 
are statistically informative they seem to lack the abil- 
ity to capture significant variances when the data set 
exhibits larger variances as in the case of our exper- 
iment where the probe set was collected over a long 
period of time. Moreover, ICs are spatially localized 
and they do not exhibit any direct correspondence to 
the facial parts as in the case of NMF. 

Unlike ICA, the extracted components using NMF 
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preserve spatial relationships corresponding to the fa- 
cial landmark features. Further, the basis images ex- 
tracted from NMF seem to  retain some global struc- 
tures of facial features (see last row of Figure (5)). Ac- 
cording to [l]: in the brain, the information is rep- 
resented using an intermediate structure between local 
features and whole objects. The basis vectors extracted 
from NMF seem to he in compliance with this by COIL- 

tributirig well for the task of face recognition. 

1 

MI  

Figure 1. Percentage of variances accounted 
by eigen components of the face images. 
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Figure 2. Recognition Rate performance of 
ICA with subsets of eigen basis images. 

5 Conclusions 

We investigated the perforniance of the ICA and 
NR4F on the MXVTS face database. We have applied 
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Figure 3. Search Rate performanceof ICAwith 
subsets of eigen basis images. 
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Figure 4. Recognition performance compari- 
son of CA, PCA and NMF with varying com- 
ponents. 

parts-based NMF and ICA to  learn face images from 
the MZVTS database. Experimental results show that 
NMF is quite robust and yields better results colnpdred 
to the described ICA feature approach and PCA for 
face recognition, especially when the probe set consists 
of images taken over a period of time. Having an in- 
termediate representation (parts-based) between local 
and global structures may be the reason behind for 
achieving bcttcr results with NMF compared to PCA 
and ICA. A reliable face recognition engine must be 
able to handle the variabilities introduce by images 
when the images are taken over a time span as it is 
what is expected from a real-time face recognition sys- 
tem. 

609 Proc. ISPAO3 



Figure 5. Sample images in the database are 
given in the frst row followed by the frst 5 
eigen faces. A subset of basis images de- 
rived from the ICA and NMF are given in the 
3rd and 4th rows, respectively. 
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