
A Sound Modeling and Synthesis System Designed for
Maximum Usability

Lonce Wyse

Institute for Infocomm Research, Singapore
email: lonce@zwhome.org, www.zwhome.org/~lonce

Abstract
A synthesis and sound-modeling system is

introduced. The design philosophy is to be “good
enough most of the time” in an extremely wide
variety of real-world scenarios at the possible
expense of being the best in any one particular aspect
- including speed and reliability. Sound design and
synthesis system design goals and decisions are
discussed, and we consider the appropriateness of
using pure Java as an implementation language for
such systems.

1 Design Constraints
There are a plethora of software synthesizers and

sound development environments to choose between
today, and each has its own strengths and weaknesses
in meeting the many different design goals for a
sound design and synthesis (SDS) system. Often the
design goals support conflicting decisions in
implementation. For example, the goal of
expressivity may support the invention of a new
language oriented specifically toward sonic and
musical tasks, while the goal of learnability may be
better addressed by using a language already familiar
to many people. We have developed an SDS system,
called Asound, with maximum usability being the
primary design criteria, written in pure Java.

Common design objectives for SDS systems
revolve around the following issues:

• Speed – for real-time performance and
shortest delay between input audio or control
signals and audio output.

• Reliability – dependable delivery of
uninterrupted audio to the output device.

• Expressivity– the ability for the code to
written in the musical and/or sonic terms in
which composers and sound designers think.

• Power – the range of available tools (e.g. a
large number of unit generators, or sound
producing and filtering routines)

• Learnability – the system needs to be as
usable as possible by musicians and sound
designers, even if they are not expert
programmers. This is part of the motivation

for graphical interfaces such as MAX
(Puckette, 1991).

• Fast development times – The time it takes to
develop bug free sound models should be
minimized.

• Development support – a good integrated
development and debugging environment.

• Usability in education – a combination of
expressivity and learnability.

• Ubiquity – the system should be inexpensive
and not require special purpose hardware and
software.

• Support for complexity – the ability to write
richly structured sound models in readable
code and to “hide” complexity in functions
and objects.

• Absence of musical and sonic structure biases
– the system should bias the user as little as
possible as to the genre of music or sonic
style. For example, it should be possible to
integrate algorithms for event and sound
generation.

• Extensibilty – Sound developers and users
need to be able to extend the capabilities of
an SDS system since no particular one will
ever meet all the needs of designers and
composers. Furthermore, sound modeling is
an active field, and an SDS system needs to
be designed to grow as new needs and
possibilities arise.

• Cross-platform potential - It should be
possible to develop sound and musical
objects on which ever platform is most
convenient for the composer or developer,
and run them on most others.

• Integrability – Sound objects should be
runnable from a maximum number of other
applications environments – code written in
languages other than the one used to develop
the sound object, MIDI controllers, and
should enable control from and if necessary,
return audio to other applications such as
sequencers, audio editors, graphical
applications, games, multimedia development
environments such as Macromedia Director
& Flash, 3DS Max.

• Maintainabilty – easy to upgrade and modify
with the minimum amount of effort. Argues
against graphical interfaces.

• Small bandwidth requirements – a concern
when downloading the system and/or sound
models is required for applets, interactive
Macromedia applications, and online or
downloadable games.

• Low security risk - client computers must be
safe from the possibility of downloading
malicious code

2 Meeting Design Requirements
with Java

By building the SDS system in pure Java, many
of the above requirements are automatically met. The
core of the system that address the sound design
requirements per se are addressed below. Addressing
ubiquity and learnability, Java is a free, commonly
used and widely taught language. For the many
thousands of programmers, only the specific library
of classes for sound need be learned. For
development support, there are commercially
supported online manuals, and extensive tutorial
material available across the Web. There are free and
commercial IDE’s (integrated development
environments) that support object viewing, graphical
interface design, and state-of-the-art debugging tools.
It is considerably faster to develop code in Java than
in C or C++, something we now have the luxury to
consider with the execution speeds that modern
desktop computers are achieving.

Having the full power of a general-purpose
language is important for several reasons. It helps
circumvent biases built in to the sound and musical
construction process that are hard or impossible to
work around in more constrained task-specific
languages. It permits elegant coding style and the
possibility of developing with manageable
complexity.

Both the core ASound system and Sound Models
run without modification on any platform with a
modern Java VM. By creating a core set of sound and
musical classes for programming, and not providing a
graphical coding environment, the system is both
easy to use and easy to maintain.

Design pressures on SDS systems that have been
growing in importance have to do with the growing
need to send applications, plug-ins and/or sound
models over the network. The core ASound system is
under 60 Kb, and sound models that don’t require
audio file resources are typically from 2 to 5 Kb.
These are manageable numbers for even the most
limited memory devices, and make download time
negligible.

A Java-based system also poses no security threat
to clients. ASound sound models are executable Java
byte code (not simply parameters for predefined

synthesizers). For a core engine it is at least feasible
to require end users to grant a one-time security
certificate, but many different sound models are used
in typical applications and can they come from many
different developers and vendors. This would create
an insurmountable security problem for sound models
written in C, for example.

3 Meeting Design Constraints
with Modular System Design

The central design unit of the system is the Sound
Model. A standard interface affords Play(), Stop()
and Release() events, and continuous parameter
access (setting and getting) in both natural units, and
in normalized floating point [0,1] units. Rather than
have sound model-specific and parameter-specific
methods for control, the interface methods for control
use a parameter index retrieved from the sound using
the parameter string name so that the interface
methods are the same for all sound models.

Sound Models return audio with a call to a
Generate() method that takes an empty buffer and a
requested number of samples to fill it with as
arguments.

A separate object, the SoundManager, controls a
back-end output engine with an audio buffer and a
timer. The SoundManager manages a list of sound
models by periodically calling their Generate()
methods, and summing the results into the audio
output buffer. This backend is entirely separate from
the sound model and need not be used at all. An
application can manage the Generate() calls itself.
This situation arises, for example, if an application
has access to a machine-specific buffer architecture
(e.g. Creative EAX buffers on Wintel environments).
Another example of not using the SoundManager
synthesis backend is a non-realtime application for
creating audio files from a musical score. Such an
application calls sound model Generate() methods at
whatever (possibly irregular) intervals are appropriate
for the time stamps of the events in the score and
concatenates the returned audio to the end of a file.

Input control is similarly separate from sound
models. For example, sound models never contain
MIDI specific (or even more confounding, graphical
interface) code. An entirely separate MIDI
synthesizer application manages MIDI input and
mappings to a list of sound models, and is used as a
recipient for messages streaming from a commercial
midi sequencer application. By separating the
backend timer/buffer engine and the front-end control
systems from the sound models, the sound models are
clean, small, and useful in a maximum variety of
contexts.

4 Sound Model Design
A library of classes for standard structures and

unit generators (e.g. oscillators, filters) is used to
build a sound model. A key feature of the system is
that event generation and audio generation are
supported on an equal footing. The Sound Model
Generate() method basically calls two methods in
sequence; GenerateEvents() and GenerateAudio().
Both perform their computation up to a specified time
corresponding to the length of the buffer fill
requested from Generate(). The event generator uses
the standard model interface (parameter changes,
starts, stops, releases as described above) with an
additional time stamp to send events to a “submodel”
which puts them on a queue that is managed with
sample accuracy. If the model uses event generation
for a submodel, then its audio generator typically
takes responsibility for getting the audio from the
submodel by calling the submodel Generate()
method. The structure is shown in Figure 1.

4 Common Sound Model Structures
Single-event Audio Generation – this is the

standard parameterized synthesizer paradigm that
generates a single “event” in response to a “play”
command and offers realtime parametric control.
When the Generate method on such a model is called,
the Event Generator does nothing, and the Audio

Generator return the audio. The Audio Generator
synthesis algorithm may have many dimensions of
control to which the exposed model parameters are
mapped.

Single synthesis algorithm with event pattern

control – uses the model-with-a-model structure as
shown Figure 1, but with a single submodel. Often,
parameters of the audio-only generating submodel are
exposed without modification by the top level model,
and additional parameters are exposed to control the
event pattern generation. Such a structure is suitable
for, as an example, an engine sound where the audio-
only submodel just generates a burst of noise, and the
event generating “wrapper” manages piston firings.
Parameters for the noise burst submodel, such as
filter or envelope characteristics, can be exposed by
the wrapper model and passed through to the
submodel. This structure is so typical, that an
ASound core class provides just that capability. The
Sound Model developer only has to provide the
synthesis submodel, create the control parameters and

mappings, and override the event generating method.

Multiple submodels, audio postprocessing – The

top-level model generates events and parameter
patterns that coordinate the sound synthesis across
many elementary component models. The

Event
Generator

Audio
Generator

Map

Input Parameters

Sound
Model

Sound Model Sound Model …

Input Params Event & Audio Params

Figure 1. The basic (recursive) model structure.

GenerateAudio() method at the top level retrieves the
submodel audio and can then post-process (add
reverb, filtering, panning, or any arbitrary processing
or synthesis code) before returning the buffer to the
original caller. This hierarchical method of building
up models by coordinating events and control
parameters across simpler models has proven to be a
very powerful, efficient and intuitive way to construct
rich and complex sound and musical objects.

In addition to the audio and event generator

methods, sound design typically involves determining
what parameters to expose. This is done by creating a
parameter object with a string name, minimum,
maximum and default values, and adding it to the
sound in an initialization method. Once this is done,
the parameter is automatically available to the sound
model interface as described above.

Several other methods are often overridden by a
particular sound model:
• OnInitialize() – executed once only after a sound

is loaded and before it is used,
• OnParameterUpdate() – This is where any

mapping is done between parameters exposed by
the model and controls for the audio and event
generators can be done,

• OnPlay() – executed when a play event is
received and before audio generation begins,

• OnRelease() – overridden if the sound should
enter a release segment rather than stop
generating sound immediately,

• OnStop() – executed when the sound actually
stops generating audio,

• OnK() – executed periodically at a per-sound
settable rate assumed to be slower than the
sampling rate.

The expressivity design goal is thus addressed by

appropriately hiding the bookkeeping of event queue
management, providing methods that correspond to
logical components of a sound model, and the
modular separation of synthesis and specific input
controls form the sound modeling code. With a
surprisingly small number of sound & music oriented
classes, coding in Java can be as expressive as coding
in a special purpose language such as SAOL . At the
same time, no new language constructs need be
learned (sometimes considered a hurdle to the
otherwise powerful and expressive SuperCollider
(McCartney 2002)), no new integrated development
environments need be developed (simply lacking in
most special-purpose languages), and the full power
of a general purpose language is still available as
needed.

5 Other design issues
Sound model file formats in ASound are

essentially jar files that include the sound model and

any subsound model classes, any other classes not
defined in ASound, and any audio resources the
models might use. The core system includes a special
Java class loader to manage the format, but since it is
essentially a jar file, the Java language itself provides
most of the tools for building the class loader. The jar
format includes a certain amount of compression, and
the sound model file format can be entirely self-
contained, with no dependencies beyond the core
system.

The core system comes with only a small set of
unit generators; those that are very commonly used
such as a table reader, oscillators, and filters. This
helps keep the core system small by not including
rarely used classes, but comes at the minor cost of
possibly having to download a sound-specific unit
generator class (for example) twice if two different
sounds in a single application make use of it.

Finally, sound developers will find the system is
easy to extend with additional classes by simply
compiling them, jarring them together and putting the
jar file in the Java classpath. There is no need to
change any “glue” code, or recompile any part of the
core system as there is in some other special purpose
synthesis languages. ASound can also be called from
C programs via a static library wrapper written with
JNI (Java Native Interface). The wrapper code is
technical and tedious to write, and compiled to a
machine-specific form, but such a burden would not
fall on the music and sound developers who do their
sound-oriented development once and for all.

One of the most well-known music languages is
Csound which is in the MUSIC N (Mathews, 1969)
lineage of languages specifically designed for audio
processing and synthesis. Csound is fast, has a vast
collection of unit generators available, is free and
used widely as an educational tool and has a broad
user base. However, it is quite limited compared with
modern high-level computer languages like C and
Java in areas such as data structures, control
structures, and integrated development environments
for supporting coding and debugging.

Jsyn (Burk) combines the best of both worlds by
having native method backends, while sound and
music developers work in Java. Other than the core
system that comes from a single vender, only Java
code is shared between developers and users of
sounds. This solves the security issues associated
with having to download native code for sounds, and
provides a speed advantage. However, with modern
Java environments, the speed advantage this
architecture would have provided a few years ago
isn’t as significant today. The worst of both worlds
comes with Java/native hybrid systems, too. They are
more difficult to maintain and to make cross platform
than are pure Java systems, and are still subject to
realtime disruption from Java garbage collection.

There are, of course, several reasons why pure
Java SDS systems are not wide spread. One drawback
is speed (we typically see execution speeds about 1.4

times that of comparable native code), and another is
the unpredictable garbage collection in Java that
makes such a system simply unusable in some
musical contexts. Furthermore, the current
implementation of the Java millisecond timer (as of
Java SDK v1.4.2) is still quite poor on most Windows
platforms, accurate only to within about 60 ms. It is
far more reliable on other platforms (Linux and Mac),
and a temporary workaround (in native Windows
code) provides timer accuracy to within about 1 ms.
Finally, it is still unclear whether Microsoft will
finally provide a standard Java virtual machine with
their operating systems. Currently their customers
must download and install one themselves, a
successful impediment to cross-platform
development in general.

For non-realtime music generation from complex
models and scores, the speed and realtime reliability
are not a factor, making the design constraints that
the ASound system best addresses entirely
appropriate. For sounds embedded in realtime games
and applications, the occasional hiccup that random
garbage collection or poor timer implementations can
cause have to be weighed against the value of the
benefits of security, size, platform, development
support, etc. For professional realtime music
performance, the system cannot compare to more
specialized systems – but the demands of the network
environment, faster computers, just-in-time
compilers, and ever better JVM’s are making a well-
designed Java class library SDS system a very viable
option for most of the people most of the time.

References
Burke, Phil. Jsyn; Audio Software Synthesis API and

Plugins for Java. http://www.softsynth.com/jsyn/
Mathews, M., 1969. Technology of Computer Music.

Cambridge, Mass., M.I.T. Press.
McCartney, James, 2002. Rethinking the Computer Music

Language: SuperColider. Computer Music Journal
26(4).

Puckette, Miller, 1991. Combining event and signal
processing in the MAX graphical programming
environment,” Computer Music Journal, 15(3):68 - 77.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Lonce Wyse

